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Owing to the continued use of C (and C++), spatial safety violations (e.g., buffer overflows) still constitute

one of today’s most dangerous and prevalent security vulnerabilities. To combat these violations, Checked C

extends C with bounds-enforced checked pointer types. Checked C is essentially a gradually typed spatially

safe CÐchecked pointers are backwards-binary compatible with legacy pointers, and the language allows

them to be added piecemeal, rather than necessarily all at once, so that safety retrofitting can be incremental.

This paper presents a semi-automated process for porting a legacy C program to Checked C. The process

centers on 3C, a static analysis-based annotation tool. 3C employs two novel static analysis algorithmsÐtyp3c

and boun3cÐto annotate legacy pointers as checked pointers, and to infer array bounds annotations for

pointers that need them. 3C performs a root cause analysis to direct a human developer to code that should be

refactored; once done, 3C can be re-run to infer further annotations (and updated root causes). Experiments

on 11 programs totaling 319KLoC show 3C to be effective at inferring checked pointer types, and experience

with previously and newly ported code finds 3C works well when combined with human-driven refactoring.
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1 INTRODUCTION

Vulnerabilities due to memory corruption are still a major issue for C programs [Trends 2021]
despite a large body of work that tries to prevent them [Song et al. 2019]. Microsoft’s 2019 Blue
Hat analysis [BlueHat 2019] found that spatial memory safety issues (invalid memory accesses such
as buffer overflows) were the most common vulnerability category; MITRE’s CWE top-25 list for
2021 [MITRE 2021] ranks out-of-bounds reads/writes as two of its top three.

Prior tools [Szekeres et al. 2013], including CCured [Necula et al. 2005], Softbound [Nagarakatte
et al. 2009], Low Fat pointers [Duck and Yap 2016], and Address Sanitizer (ASAN) [Serebryany
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et al. 2012] aim to enforce spatial safety automatically, by analyzing a C program and compiling
it to include run-time safety checks. Unfortunately, the resulting run-time overhead is too high
for deployment (between 60%-200%), and gaps in what programming idioms a tool can handle
either cause some programs to be rejected or leave portions of them unprotected. Rather than
compile in safety checks directly, a tool could convert C to a memory-safe language that has them,
e.g., Rust, a promising memory-safe systems language [Mozilla 2021]. Unfortunately Rust is too
different from C to constitute a practical target [Zeng and Crichton 2019], at least for now: the
(best of breed) c2rust tool [c2r 2021; Larson 2018] transliterates C to unsafe, non-idiomatic Rust,
and recent work [Emre et al. 2021] is able to take only small steps to close the safety gap.
Recently, Tarditi et al. [2018] proposed Checked C as a practical target to which to convert

legacy/active C code. Checked C extends C with checked pointer types which are restricted by the
compiler to spatially safe uses.1 Such pointers have one of three possible types, ptr<𝑇>, array_ptr<𝑇>,
or nt_array_ptr<𝑇> (𝑝𝑡𝑟 , 𝑎𝑟𝑟 , and 𝑛𝑡𝑎𝑟𝑟 for short), representing a pointer to a single element, array
of elements, or null-terminated array of elements of type 𝑇 , respectively. The latter two have an
associated bounds annotation; e.g., a declaration array_ptr<int> p : count(n) says that p is a pointer
to an int array whose size is n. Checked C’s Clang/LLVM-based compiler represents checked
pointers as system-level memory words, i.e., without łfatteningž metadata, ensuring backward
compatibility. The compiler uses these bounds annotations to add dynamic checks prior to checked
pointer accesses, to prevent spatial safety violations. These run-time checks can often be proved
redundant and removed by LLVM, yielding good performance. Tarditi et al. reported average
run-time overheads of 8.6% on a small benchmark suite, and Duan et al. [2020] found essentially no
overhead when running Checked C-converted portions of the FreeBSD kernel.
Could we conceivably carry out an automatic port from C to Checked C that achieves full

spatial safety? Probably not: The problems prior tools experienced would remanifest in the emitted
Checked C code. However, Checked C’s design aims to support incremental conversion from legacy
C, in the style of gradual (aka migratory) typing [Greenman and Felleisen 2018; Siek and Taha 2007;
Tobin-Hochstadt et al. 2017]. In particular, Checked C permits annotating some of a function’s
parameters or variables as checked pointers, which then benefit from safety checks, while leaving
other pointers unannotated. Checked C also supports annotating whole regions of legacy code (e.g.,
standard libraries) with interop types which leave the code alone but provide it with a checked-
type interface. Designated checked regions of code that use only checked pointers enjoy spatial
safetyÐany run-time spatial safety violation cannot be blamed on code in the region [Li et al. 2022;
Ruef et al. 2019]. With these mechanisms, an automated conversion tool need not be perfect: It can
output partially annotated code, and the developer can take care of parts the tool cannot handle.

This work considers the problem of semi-automatically porting an existing C program to Checked
C. We observe that any porting process will essentially involve both refactoring code to use idioms
that Checked C accepts, and annotating that code with Checked C pointer types. We have developed
a tool called 3C (Checked C Converter) which automates the annotation part, and guides the
developer to the parts of her code that should be refactored. We have developed a two-phase
workflow that intersperses runs of 3C with manual refactoring (Section 3).

3C uses two novel static analysis algorithms, which we call typ3c (pronounced łTypesž) and
boun3c (łBouncež). typ3c runs first to determine which legacy pointers can be made into checked
pointers, and then boun3c infers the bounds of the 𝑎𝑟𝑟 and 𝑛𝑡𝑎𝑟𝑟 varieties.

1Checked C does not yet ensure temporal memory safety, which means that it does not prevent use-after-free errors. While

spatial safety is still quite useful on its own, an extension to Checked C to ensure temporal safety, similar in spirit to

CETS [Nagarakatte et al. 2010], is underway [Zhou 2021]. Temporal safety can also be ensured by linking a conservative

garbage collector [Boehm and Weiser 1988].
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typ3c is a whole-program, constraint-based static analysis that works in two parts (Section 4).
The first part determines which pointers can be checked (e.g., those not involved in unsafe casts or
complex preprocessor uses), and the second determines each checked pointer’s type; e.g., pointers a
that are indexed or incremented (a[i] or a++) will be 𝑎𝑟𝑟 or 𝑛𝑡𝑎𝑟𝑟 . typ3c is inspired by type qualifier
inference [Foster et al. 2006], but employs novel components that aim to convert as many pointers
as possible to their final, correct checked type. It does this by localizing wildness (Section 4.1): When
a function foo locally uses a pointer parameter unsafely, typ3c gives it a Checked C interop type
to prevent callers or callees that are otherwise perfectly safe from being polluted by foo’s locally
unsafe pointer use. This means that when the programmer annotates/refactors foo to render it safe,
she does not have to also manually update all of its callers/callees (and theirs). typ3c helps organize
the porting process by identifying the set of root causes of non-checked-ness and listing them
according to downstream influence: refactoring or annotating the code at the top of the list and
then rerunning 3C will result in converting additional downstream pointers (Section 4.2). typ3c
employs a novel, multi-step constraint solving algorithm that achieves more general, maintainable
results, especially for libraries (Section 4.3).
boun3c next infers bounds annotations for 𝑎𝑟𝑟 and 𝑛𝑡𝑎𝑟𝑟 pointers (Section 5); as far as we are

aware, boun3c is the first analysis that can infer pointer bounds in terms of in-scope variables
and constants. boun3c takes inspiration from static analyses for race detection, which correlate

pointers with protective mutex variables [Pratikakis et al. 2011]. boun3c instead correlates array
pointers with potential bounds employed consistently at pointers’ allocation and usage sites.
To start, boun3c seeds bounds at allocation sites; e.g., int x[10] seeds x’s bound as count(10)

and y = malloc(sizeof(int)*n) seeds y’s bound as count(n). These bounds are then propagated
consistently via dataflow across scopes; e.g., a call f(y,n) propagates y’s correlation with n to a
correlation between f’s two parameters. Bounds propagation is treated context-sensitively both for
function calls and for structs. When seed bounds are unavailable, boun3c tries various heuristics.
typ3c aims to be sound in the sense that it outputs code that the Checked C compiler will accept

so long as boun3c’s inferred bounds are correct (modulo bugs in typ3c or the Checked C compiler).
boun3c aims to be partially sound in the sense that its (non heuristically) determined bounds are
correct, but some may be missing (and again: bugs). We find this balance minimizes porting effort.
3C is implemented as a clang tool. We evaluated its effectiveness on a benchmark of 11 programs,

many of them large, totaling about 371K LoC (Section 6). Running times were fast enough for
interactive useÐtypically less than one second, and at most 22s. Our experiments show that 3C is
effective at inferring Checked C types along with bounds annotations. In particular, we find that
typ3c automatically converted 67.9% of pointers in our benchmark programs to checked types,
which improves on the 48.4% inferred by unification-style algorithms used in prior work [Necula
et al. 2005]. boun3c was able to infer bounds for 77.3% of pointers that required them. Running 3C
on programs previously ported to Checked C, but with annotations removed, often restored most
of the removed annotations, and many times restored them all. We have also used 3C within our
two-phase workflow to iteratively port three server programsÐvsftpd, thttpd, and icecastÐ
and a bignum library to Checked C, for a total of about 42 KLoC. This process balanced manual
and automated work, and using it revealed a (known) CVE in thttpd and two new spatial safety
violations in the bignum library.

In addition to being different from prior work already mentioned which aims to retrofit C code
to be safe, our work represents a novel take on the automated type migration problem for gradual
typing, which also seeks to automatically infer safety-enhancing static annotations [Phipps-Costin
et al. 2021]. Our work differs from all of the above by focusing not on a single automated step,
but rather on the iterative process of conversion which leverages automation (Section 7). This
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usage mode affects the design of the automation: in our case, it affects 3C’s determination of which
pointers are checked, and how it infers array bounds.
3C and the programs we have ported with it are freely available as part of the Secure Software

Development Project (SSDP)’s fork of Checked C, at https://github.com/secure-sw-dev.

2 BACKGROUND: CHECKED C

This section presents some background on Checked C, the target language for 3C. Checked
C [Specification 2016; Tarditi et al. 2018] extends Cwith support for checked pointers. Development of
Checked Cwas initiated byMicrosoft Research in 2015 but starting in late 2021was forked and is now
actively managed by the Secure Software Development Project, https://github.com/secure-sw-dev/.

2.1 Checked Pointer Types

Checked pointer types include ptr<𝑇> (𝑝𝑡𝑟 ), array_ptr<𝑇> (𝑎𝑟𝑟 ), and nt_array_ptr<𝑇> (𝑛𝑡𝑎𝑟𝑟 ), which
describe pointers to a single element, an array of elements, and a null-terminated array of elements
of type 𝑇 , respectively. Both 𝑎𝑟𝑟 and 𝑛𝑡𝑎𝑟𝑟 pointers have an associated bounds which defines the
range of memory referenced by the pointer. Here are the three different ways to specify the bounds
for a pointer p; the corresponding memory region is at the right.

array_ptr<𝑇> p: count(𝑛) [p, p + sizeof(𝑇 ) × 𝑛)

array_ptr<𝑇> p: byte_count(𝑏) [p, p + 𝑏)

array_ptr<𝑇> p: bounds(𝑥, 𝑦) [𝑥, 𝑦)

The interpretation of an 𝑛𝑡𝑎𝑟𝑟 ’s bounds is similar, but the range can extend further to the right,
until a NULL terminator is reached (i.e., the NULL is not within the bounds).
Bounds expressions, like the 𝑛 in count(𝑛) above, may refer to in-scope variables; struct mem-

bers can refer to adjacent fields in bounds expressions. For soundness, variables used in bounds
expressions may neither be modified nor have their address taken, so some legacy idioms may be
unsupported. (See Section 3.1 for a worked-out example.)

Checked C also supports polymorphic (generic) types, on both functions and structs. For example,
following defines a generic allocation function returning an array of objects of some type 𝑇 .

for_any(T) array_ptr<T> alloc(unsigned int s) : byte_count(s);

2.2 Spatial Safety with Efficiency

Porting an entire program to use checked pointers confers the benefit of spatial memory safety,
meaning that pointers may not access a buffer outside its designated bounds. The Checked C
compiler (implemented as an extension to clang) will instrument the program at checked pointer
dereferences (load and store) to confirm that (a) the pointer is not NULL and (b) that (if an 𝑎𝑟𝑟

or 𝑛𝑡𝑎𝑟𝑟 ) the dereference is within the range of the declared bounds. For instance, in the code
if (n>0) a[n-1] = ... the write is via address 𝛼 = a + sizeof(int)×(n-1). If the bounds of a are
count(u), the inserted check will confirm that prior to dereference a ≤ 𝛼 < a + sizeof(int)×u.
Failed checks throw an exception.
Oftentimes, inserted checks can be optimized away by LLVM. Consider the above code to be

enclosed in another condition, such as, if (n<u) if (n>0) a[n-1] =... In such cases, the inserted
check can be removed as the outer condition n<u already ensures that the dereference is within
bounds. The programmer can also use dynamic bounds casts dynamic_bounds_cast<𝑇 >(𝑒, 𝑏) to help
the optimizer. This code casts 𝑒 to type 𝑇 and dynamically checks that either 𝑒 is NULL, or that the
given bounds 𝑏 are a sub-range of the bounds currently associated with 𝑒 . Effectively the cast asserts
a fact which the compiler can leverage statically, but which is soundly verified dynamically. Such
casts are especially useful to hoist checks out of loops. The result of all of this is good performance:
Experiments on a small benchmark suite [Tarditi et al. 2018] reported average run-time overheads
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1 void baz(int *q,

2 int *c, int len) {

3 for (int i = 0; i<len; i++) {

4 q[i] += *c;

5 }

6 }

7

8 extern void recordptr(void *x);

9

10 static int *g = 0;

11

12 void foo(int *p, int n) {

13

14

15 int m = 0;

16 recordptr(p);

17 g = p;

18 baz(p,&m,n);

19

20 }

21

22 void bar(int z) {

23 int *r =

24 malloc(sizeof(int)*z);

25 foo(r,z);

26 baz(r,g,z);

27 }

void baz(array_ptr<int> q: count(len),

ptr<int> c, int len) checked {

for (int i = 0; i<len; i++) {

q[i] += *c;

}

}

o extern void recordptr(void *x);

static int *g = 0;

void foo(int *p: itype(array_ptr<int>)

count(n),

int n) {

int m = 0;

recordptr(p);

g = p;

baz(assume_bounds_cast<array_ptr<int>>

(p, count(n)),&m,n);

}

void bar(int z) {

array_ptr<int> r: count(z) =

malloc<int>(sizeof(int)*z);

foo(r,z);

baz(r,assume_bounds_cast<ptr<int>>(g),z);

}

void baz(array_ptr<int> q: count(len),

ptr<int> c, int len) checked {

for (int i = 0; i<len; i++) {

q[i] += *c;

}

}

itype_for_any(T) extern void

recordptr(void *x : itype(array_ptr<T>));

static ptr<int> g = 0;

void foo(array_ptr<int> p: count(n),

int n) checked {

int m = 0;

recordptr<int>(p);

g = p;

baz(p,&m,n);

}

void bar(int z) checked {

array_ptr<int> r: count(z) =

malloc<int>(sizeof(int)*z);

foo(r,z);

baz(r,g,z);

}

(c) Complete conversion
(a) Original C code (b) After initial conversion by 3C after manually

with marked root causes (o) fixing root causes.

Listing 1. (Contrived) Example demonstrating various phases of 3C.

of 8.6% (49.3% in one case); a Checked C port of FreeBSD’s UDP and IP stack was found to impose
no overhead at all [Duan et al. 2020].

Ruef et al. [2019] and Li et al. [2022] formalized a core model of Checked C and showed what it
means for a Checked C program to be spatially safe. In the formalism, all data is represented as an
integer annotated with the type the program currently views that it has, e.g., a pointer or a plain
number (the annotations are safely erased in the real implementation). The operational semantics
premises checked-pointer dereferences on NULL and bounds checks, yielding an exceptional
outcome on failure. A spatially safe Checked C program is sound in the typical sense: It will either
run forever, evaluate to a final value, or it will halt with a NULL or bounds exception; it will never
get stuck, e.g., by attempting to dereference an integer as if it was a checked pointer. However,
spatial safety is partial for partially ported programs, as discussed next.

2.3 Backward Compatibility

Checked C’s design was inspired by prior safe C dialects such as Deputy [Condit et al. 2007; Zhou
et al. 2006] and Cyclone [Jim et al. 2002]. A key departure is that it aims to facilitate incremental

porting. To this end, Checked C is backward compatible with legacy C, which allows checked
pointers to be added piecemeal to an existing program, in the style of gradual typing [Greenman
and Felleisen 2018; Tobin-Hochstadt et al. 2017]. For example, the following is valid Checked C:

void foo(int *q) { int x; ptr<int> p = &x; *q = 0; *p = 1; }

Spatial safety checks are only added for Checked pointer types, e.g., p above.
When a program is not fully ported, the spatial safety guarantee is partial. In particular, a

programmer is able to designate regions of codeÐwhole files, single functions, or even single
blocks of codeÐas checked regions; these are often designated with a checked annotation.2 Such a
region must contain only checked pointer types and adhere to a few other restrictions (e.g., no

2You can also designate unchecked regions within checked ones, in the style of Rust’s unsafe blocks.
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variadic function calls). The region is sure to be spatially safe in the sense that any run-time safety
violation cannot be blamed on code in that checked region; rather, the source of the problem was
the execution of unchecked code. Ruef et al. [2019] and Li et al. [2022] proved this blame property
for their formal model of Checked C. Thus, when an entire Checked C program is in a checked
region it is sure to be spatially safe; for partially ported programs, the more code that executes in a
checked region, the lower the risk of an exploitable vulnerability.

2.4 Interop Types (itypes) and Trusted Casts

Checked C provides interop types (aka itypes) to allow legacy C functions to be given an intended

checked type. For example, the Checked C version of string.h defines the following prototype:

size_t strlen(char *s : itype(nt_array_ptr<char>));

This type indicates that legacy code may pass to strlen a char *, while Checked C callers should
pass in a nt_array_ptr<char> instead.
Itypes can be used on function definitions too, not just declarations; e.g., the above prototype

could be used with the C code implementing strlen. When the function definition appears within a
checked region, the function’s body is typechecked as if the parameters had the indicated checked
types; otherwise, it is typechecked as if it had the unchecked ones. Either way, the compiler will
ensure the itype is self-consistent; e.g., itypes like char *p : itype(ptr<int>) will be rejected.
The semantics of itypes supports incremental conversion. In particular, if we want to convert

module 𝐴, and it calls into module 𝐵’s foo function, which we don’t want to convert just yet, we
can annotate foo with an itype, and then convert 𝐴 (and place it in a checked region), which will
treat calls to foo according to its checked types. At the same time, foo’s body will still typecheck
without changes. Eventually we will port 𝐵, including foo, whose body we can place in a checked
region; then, its itype parameters will be considered as having their checked types. Once all callers
of foo have been ported, we can swap its itypes for checked ones.

Itypes given to functions outside of a checked region are trustedÐa spatial safety violation could
occur if the function’s code does not implement the semantics of the indicated checked type. For ex-
ample, suppose we give C function foo the itype void foo(int *x: itype(array_ptr<int> count(8)),
but actually foo expects x to have size 10. Then, callers in checked regions may pass foo too-short
arrays without complaint. Note that this situation is no different than that of any safe language
with a foreign function interfaceÐsoundness of safe code is predicated on the foreign code being
properly annotated.

Within unchecked regions, programmers can write assume_bounds_cast<𝑇 >(𝑒, 𝑏) to cast 𝑒 to type
𝑇 with bounds 𝑏. This has the equivalent compile-time behaviour of the dynamic bounds cast
operator but performs no run-time check; as such, it is a potential source of unsoundness. We can
think of itypes on functions inside a checked region as inducing an invisible assume_bounds_cast on
arguments passed in from unchecked callers.

3 C TO CHECKED C BY 3C

Our goal is to port a legacy C program to use Checked C. While fully automated conversion might
be the ideal, it is impractical. Thus, we have developed an iterative, semi-automated approach.

3.1 Porting = Annotation + Refactoring

Porting a program to Checked C involves making two kinds of change: annotation and refactoring.
The first kind leaves the content of the code as is, and involves replacing legacy C types with
checked-type alternatives, adding bounds annotations and casts, and labeling (un)checked code
regions. For example, consider Listing 1 parts (a) and (c): The former is a legacy C program and the
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int resize_buf(char **buf, unsigned *sz) {
unsigned news = round_up(*sz, 64);
char *newbuf = NULL;
newbuf = realloc(buf, news);
*buf = newbuf;
*sz = news;
return newbuf != NULL;

}

(a) Original code

int resize_buf(ptr<array_ptr<char>: count(*sz)> buf,
ptr<unsigned> sz) {

unsigned news = round_up(buf->sz, 64);
array_ptr<char> newbuf: count(news) = NULL;
... // as above

}

(b) Invalid Annotations

typedef struct {
array_ptr<char> buf: count(sz);
unsigned sz;

} SIZEBUF;

int resize_buf(ptr<SIZEBUF> buf) checked {
unsigned news = round_up(buf->sz, 64);
array_ptr<char> newbuf: count(news) = NULL;
newbuf = realloc<char>(buf->buf, news);
buf->buf = newbuf;
buf->sz = news;
return newbuf != NULL;

}
// Refactor callers of resize_buf ...

(c) Refactored and Annotated Checked C

Listing 2. Porting via refactoring and annotation.

latter is its final Checked C conversion. Note converted function baz: its code is unchanged, but its
parameters have checked types and its body is labeled checked.

While annotations may be all we need, oftentimes we must refactor the code before Checked C
will accept it. Consider the code in Listing 2(a). Here, buf is a pointer to an array whose (original
and updated) size is stored in *sz. We might try to annotate this code as shown in Listing 2(b),
but Checked C rejects this, disallowing bounds annotations on nested pointers (here, *buf is the
array). Thus the code must be refactored. There are various ways to do so, but in our experience
(Section 6.6) a robust approach is to couple a buffer with its length in a struct and adjust the callers
accordingly, as shown in Listing 2(c).

While we might hope to fully automate the conversion process, examples like Listing 2 illustrate
why doing so is impractical. To automate the refactoring would require soundly inferring the
connection of *buf to its length *sz, abstracting the two into a struct and then changing all of the
callers to also use it.3 Doing so might łopen a can of worms,ž precipitating similar refactorings
elsewhere; any mistakes will leave a mess for the programmer to clean up or will simply precipitate
failure (which is part of the reason that few C refactoring tools exist).

3.2 Our Approach

Typ3c
(Sec. 4)

3C

    Boun3c
     (Sec. 5)

Original 
Source 
code

PtypKind

Fully ported 
Checked C 

Code

Prioritized root 
causes

Refactored 
      original code

Sec. 4.2

pfg / sfg

Checked C code 
with missing 

bounds

Phase 1 Phase 2

Spatial safety 
bugs

Add bounds

New bounds

Fig. 1. Overview of the porting process using 3C.

Given the practical impossibility of fully
automated conversion, we designed a port-
ing process that involves human input.
In particular, we developed 3C to mostly
automate the annotation portion of port-
ing, and we use it in a way that organizes
the needed refactoring. This process may
make sense when porting to other gradu-
ally typed languages, too. Figure 1 shows
the overview of the porting process. The
process has two phases. In the first, we:

3CCured and Softbound perform a łrefactoringž during compilation that associates each pointer with an added length

field/variable; doing so makes *sz redundant, avoiding the problem of inferring *sz is the intended length. This approach

adds overhead, and is not really appropriate when the goal is updating the source program, rather than compiling it.
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(1) Run 3C on the program, which converts pointers to be checked and adds bounds and other
annotations.

(2) Examine the most consequential root causes of unconverted pointers; root causes are tabulated
by 3C itself, ordered by influence.

(3) Fix a root cause by refactoring the original C program. The fix may be a tweak or a more
pervasive change, and may involve adding Checked C annotations.

After each root-cause fix, we iterate the above, rerunning 3C on the updated C program, which
should result in even more converted pointers. Notably, the changed code can always be compiled
and tested as usual.
For example, running 3C on Listing 1(a) produces the program in Listing 1(b). We can see that

pointers g (line 10) and p (line 12) are both unchecked (the latter as part of an itype, for reasons
discussed in the next section); the root cause indicated by 3C is the call recordptr(p). The call
effectively casts p to type void *, which is potentially unsafe, and then p is assigned to g. We can fix
this problem by changing the prototype on line 8 of Listing 1(a) to have the checked type shown
on lines 8ś9 in Listing 1(c), which indicates that recordptr treats its parameter generically (since it
is universally quantified), which is safe. Rerunning 3C on this updated program produces the final
and fully converted program shown in Listing 1(c).
It will not always be feasible to port the whole program during Phase 1. Porting may take too

long, and the programmer may be satisfied with what they have, for now. Thus begins Phase 2.
At this point, we have two versions of the program: (a) the original version, which compiles and
runs, and due to repeated application of step (3) above will have been refactored and may contain a
few Checked C annotations; and (b) the annotated code produced by 3C when run on this original.
Phase 2 involves manually completing the porting process for individual version-(b) files, copying
them over to version (a), and testing the result. Checked C’s itypes (Section 2.4) are leveraged by 3C
to facilitate this process: itype-annotated header files are copied over at the start of Phase 2, which
means they are compatible with both annotated and unannotated clients. Sometimes it is useful to
run 3C on the copied-over version of a file; this has the effect of propagating manually-introduced
changes within it.

The programmermay discover spatial safety bugs during either phase of this process. In particular,
she may find that what she thought was a legal bound is rejected by the compiler as invalid. Or,
she may find that running the tests triggers a failed run-time check which identifies a spatial safety
bug. As discussed in Section 6.6, while porting tiny-bignum and thttpd we uncovered spatial
safety bugs in this manner.
The programmer can stop porting at any time during Phase 2 and will have a runnable, tested,

more-safe version of their program.

4 TYPE INFERENCE BY TYP3C

3C first performs a whole-program analysis called typ3c to convert legacy pointers to be checked
pointers. It has two parts. The first part determines which pointers cannot be convertedÐwe call
these wildÐbecause they are used in an unsafe way. The second part determines the pointers’ type,
if checked, i.e., either 𝑝𝑡𝑟 , 𝑎𝑟𝑟 , or 𝑛𝑡𝑎𝑟𝑟 .

4.1 Checked, or Wild

typ3c first aims to infer the kind of each pointer, which is to say, whether the pointer can be made
checked (𝑐ℎ𝑘) or not (it is𝑤𝑖𝑙𝑑).

Basic Approach. Kind inference is essentially a kind of type qualifier inference [Foster et al. 2006].
It works by associating each level of a pointer with a qualifier variable 𝑞 (e.g., int** has two levels),
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and generating a set of constraints 𝑥 ⊑ 𝑦 where 𝑥 and 𝑦 are either qualifier variables or qualifier
literals 𝑐ℎ𝑘 or𝑤𝑖𝑙𝑑 . A solution to the constraints is a map from qualifier variables to literals that
respects the ordering 𝑐ℎ𝑘 ⊏ 𝑤𝑖𝑙𝑑 . We can view the constraints as a flow graph: edges 𝑥 −→ 𝑦

correspond to constraints 𝑥 ⊑ 𝑦. Variables reachable from𝑤𝑖𝑙𝑑 solve to𝑤𝑖𝑙𝑑 ; the rest can be 𝑐ℎ𝑘 .
Consider the following example.
void func(int **y, int *z) {

z = (int *)5;

*y = z;

}

zW *y y

The flow graph, to the right, has four nodes 𝑦, ∗𝑦, and 𝑧, for the outer and inner qualifiers of y
and the qualifier for z, respectively, along with the node𝑊 (for 𝑤𝑖𝑙𝑑). The edge𝑊 −→ 𝑧 arises
from the unsafe use z = (int *)5 and the bidirectional edge 𝑧 ←→ ∗𝑦 is for the assignment *y = z.
From this graph, we can determine that 𝑧, and ∗𝑦 must be𝑤𝑖𝑙𝑑 , since they are reachable from𝑊 ,
but 𝑦 can be 𝑐ℎ𝑘 , since it is not. Thus y’s type in the rewritten program would be ptr<int *>; the
rest would be unchanged.

Localizing 𝑤𝑖𝑙𝑑ness within functions. 3C is designed to automate as much of the annotation
process as possible, while isolating and minimizing the work for the human developer to do. To
this end, it handles functions and function calls in a novel manner. Consider the following code.

int deref(int *y) { return *y; }

int bar(void) { int *p = (int *)5; deref(p); }

If we follow the basic approach, the graph will have nodes𝑊 , 𝑦, and 𝑝 , and edges𝑊 −→ 𝑝 (due
to assignment p = (int *)5), and 𝑝 ←→ 𝑦 (due to call deref(p)). Thus, both y and p would end up
𝑤𝑖𝑙𝑑 . Basically, passing𝑤𝑖𝑙𝑑 p to deref has forced its parameter y to be𝑤𝑖𝑙𝑑 too. On the one hand,
doing so seems sensible: passing an unsafe pointer to function can make that function misbehave.
On the other hand, the function deref is itself completely safeÐin the absence of bar, if we made
deref’s parameter have type ptr<int> it would typecheck. Thus, making y as𝑤𝑖𝑙𝑑 would ultimately
just make extra work for the programmer, during porting.
typ3c’s algorithm determines whether a function parameter is 𝑐ℎ𝑘 or𝑤𝑖𝑙𝑑 based on that param-

eter’s use by the function. If the function uses its parameter safely then typ3c gives it a checked type.
If a caller passes an unchecked pointer, 3C adds a cast at the call site. We see this in Listing 1(b)
with baz: This function treats its parameter c safely, internally, so it’s given checked type ptr<int>.
However, the call from bar on line 26 passes to c an unchecked pointer, g. Thus, 3C inserts an
assume_bounds_cast (Section 2.4) at the callsite. This cast effectively signals to the programmer that
there is work to do (and where).
If a function uses its parameter unsafely, as with func and z in our first example, then typ3c

makes that parameter𝑤𝑖𝑙𝑑 . By a similar argument to the one above, we do not want a function’s
unsafe use of its parameter to force its passed-in arguments𝑤𝑖𝑙𝑑 too. Once again, doing so would
just make more work for the programmer, who would have to potentially make many manual
type changes once func’s internals are fixed. To avoid this work, 3C inserts an itypeÐdoing so
allows callers to pass in a checked typed argument, despite the internal unsafe use. We see this in
Listing 1(b): function foo makes parameter p𝑤𝑖𝑙𝑑 (due to passing it to recordptr), and it is given an
itype so that passed-in arguments can still be 𝑐ℎ𝑘 , as with r in the call on line 25.

Implementing localized𝑤𝑖𝑙𝑑ness. To see how we implement function-localized𝑤𝑖𝑙𝑑ness, consider
Figure 2(a), which is the kind flow graph produced when analyzing Listing 1(a). Each node is labeled
with the program variable, and each edge is labeled by the line of code that it models.

First, notice that instead of using one node in the graph for each function parameter, we use two.
The internal node is used when considering code in the function itself, while the external node is
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Fig. 2. The kind and ptyp graphs and solutions by typ3c for Listing 1. Nodes 𝑥 are variables, except literals

𝑊 (wild), 𝐴 (𝑎𝑟𝑟 ), and 𝑃 (𝑝𝑡𝑟 ). An edge 𝑥
𝑛
−→ 𝑦 represents a qualifier constraint 𝑥 ⊑ 𝑦 due to the code at line 𝑛.

used at call sites. We can see this in Figure 2(a) for foo’s parameter p, where the external node is on
the left and internal on the right. We connect these nodes with an edge, external to internal.
Second, notice that function calls use a directed edge from the external parameter node to the

argument node (assignments within a function use a bidirectional edge as in the basic approach;
e.g., see line 17). For foo, the call to baz on line 18 induces an edge from external q to internal p
(and from external c to internal &m). This is the reverse of what you’d expect: The flow of data
goes from p to q, but the edge is q to p. With this arrangement, we can see that there is no path
from argument nodes to a parameter’s node, nor vice versa. This means that callers and callees
are mutually independent, as we want. For example, we can see that despite the fact that g is𝑤𝑖𝑙𝑑 ,
and the call baz(r,g,z) passes g to baz’s parameter c, the direction of the edge stems the łwildfire.ž
Likewise, even though foo’s first parameter p ends up 𝑤𝑖𝑙𝑑 , the call foo(r,z) on line 25 does not
cause r to be𝑤𝑖𝑙𝑑 , too.
To get the same effect, we might have chosen to generate no edges for a function call, thereby

disconnecting arguments and parameters. But the edges are useful when a function’s parameter
should be𝑤𝑖𝑙𝑑 with no itype, and should force any passed-in argument to be𝑤𝑖𝑙𝑑 . In the example,
the recordptr function’s parameter has a void * type, and the function is extern. 3C cannot see
(or convert) recordptr’s body, so it has no guess as to what checked type or itype the parameter
should have. Thus typ3c adds the edge𝑊 −→ 𝑥𝑒 (𝑥𝑒 is the external node of x) which because of
the reversed call edge will cause arguments to be𝑤𝑖𝑙𝑑 (e.g., p on line 16). typ3c will do the same for
the parameters of function definitions it finds in system headers (e.g., which are meant to be inlined)
or macro definitions, since it cannot rewrite those headers or macros to have checked types.
After solving, 3C looks at the solutions of the internal and external parameter nodes. When

both are 𝑐ℎ𝑘 , the parameters gets a checked type; if the external is 𝑐ℎ𝑘 but the internal is𝑤𝑖𝑙𝑑 , the
parameter gets an itype; if both are𝑤𝑖𝑙𝑑 , the parameter is left as is. Note that the reverse direction
on the call edgeÐfrom parameter to argumentÐmeans that a parameter could solve to 𝑐ℎ𝑘 while
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its argument solves to𝑤𝑖𝑙𝑑 . In this case the 3C rewriter will insert a cast at the call-site; we see
this in Listing 1(b) and Figure 2(a) for the calls to baz.

4.2 Root Cause Analysis

If 3C does not convert all pointers to be checked, the developer should strive to refactor their code
to convert as many𝑤𝑖𝑙𝑑 pointers as possible. To help their work, typ3c identifies code that is a root
cause of𝑤𝑖𝑙𝑑ness, meaning that it is responsible for a direct edge𝑊 −→ 𝑞 in the graph. This is a
place where, for example, an unsafe cast occurs or where an extern function’s params/return were
made𝑤𝑖𝑙𝑑 . Fixing a root cause may have positive downstream effects. A pointer can be marked
𝑤𝑖𝑙𝑑 either directly (e.g., x in Figure 2(a)) or indirectly, due to a path from a directly marked pointer
(p and g). Each directly marked root cause pointer is identified by 3C along with the reason it was
made𝑤𝑖𝑙𝑑 . 3C will output a report ordered by influence, with the root-cause pointers responsible
for the most downstream𝑤𝑖𝑙𝑑 pointers coming first.
For our example, 3C will indicate that recordptr’s parameter x is a root-cause pointer (due to

recordptr being an extern function). Suppose that upon inspecting recordptr’s code or man page the
developer decides that recordptr is safe because it treats its argument generically. Using Checked
C’s generic types feature, she can manually rewrite the extern in the original C to be as shown on
lines 8ś9 in Listing 1(c). Upon re-running 3C on the updated program, the edge𝑊 −→ 𝑥 in the
graph will disappear, allowing all pointers to solve to 𝑐ℎ𝑘 .

4.3 Determining Pointer Type

The second part of typ3c determines the type of a checked pointer, which is either 𝑝𝑡𝑟 , 𝑎𝑟𝑟 , or
𝑛𝑡𝑎𝑟𝑟 . It does so using another flow graph, the ptyp graph; the ptyp graph for our example is given
in Figure 2(b). Once again, generating and solving the constraints in this graph is basically a novel
application of type qualifier inference [Foster et al. 2006].

In this graph, nodes represent pointer qualifiers once again, but now rather than solving to 𝑐ℎ𝑘
and 𝑤𝑖𝑙𝑑 , they will solve to 𝑝𝑡𝑟 , 𝑎𝑟𝑟 , 𝑛𝑡𝑎𝑟𝑟 (each of which has a representative node, 𝑃 , 𝐴, and
𝑁 ). Parameter nodes are paired again, but they are unified by a bidirectional edge between them.
ptyp solutions follow lattice order 𝑛𝑡𝑎𝑟𝑟 ⊏ 𝑎𝑟𝑟 ⊏ 𝑝𝑡𝑟 , from least to most general. In the graph,
constraints 𝑥 ⊑ 𝑦 are written as edges 𝑦 −→ 𝑥 . Additional edges arise from code idioms that
constrain solutions. For example, line 4 indexes q as an array, so that leads to the edge 𝑞 −→ 𝐴,
which basically says łq’s solution can be at most 𝑎𝑟𝑟 ;ž i.e., it cannot be 𝑝𝑡𝑟 . Line 18 takes the address
of m; this produces edge 𝑃 −→ &𝑚, which basically says that the type of &m must be 𝑝𝑡𝑟 ; it cannot
be 𝑎𝑟𝑟 or 𝑛𝑡𝑎𝑟𝑟 . There is a similar edge lower-bounding to r with 𝐴; this arises from the malloc call,
whose output could be an array but may not be zeroed out, and thus cannot be trusted as 𝑛𝑡𝑎𝑟𝑟 .

A solution 𝑆 to the ptyp graph is a map from qualifier nodes to 𝑝𝑡𝑟 , 𝑎𝑟𝑟 , or 𝑛𝑡𝑎𝑟𝑟 such that
subtyping constraints indicated by the edges are satisfied. Such a solution can be constructed by a
linear-time graph traversal [Rehof and Mogensen 1999]. The least solution 𝑆 is one such that for
all alternative solutions 𝑆 ′, 𝑆 (𝑞) ⊑ 𝑆 ′(𝑞), for all 𝑞; the greatest solution is the reverse. While prior
work on qualifier inference mostly focuses on least solutions [Foster et al. 2006, 2002; Shankar et al.
2001] (which is our preference for kind inference), typ3c pointer-type inference is different.

int *getarr(int n) {

int *x = malloc(sizeof(int)*n); // 𝑎𝑟𝑟 ⊑ 𝑥

return x; // 𝑥 = 𝑟𝑒𝑡

}

Need for both least and greatest solutions. In-
tuitively, we want the greatest solution (or most
general type) for checked types. For instance,
consider an array dereference: a[i], which in-
troduces the constraint 𝑎 ⊑ 𝑎𝑟𝑟 in ptyp graph.
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Given the checked type lattice: 𝑛𝑡𝑎𝑟𝑟 ⊏ 𝑎𝑟𝑟 ⊏ 𝑝𝑡𝑟 , the possible values of 𝑎 are {𝑎𝑟𝑟, 𝑛𝑡𝑎𝑟𝑟 }, i.e., an
array or null-terminated array.

In the absence of other constraints, we only have the evidence that a is an array. Hence, we want
to pick 𝑎𝑟𝑟 , which is the greatest solution that satisfies 𝑎 ⊑ 𝑎𝑟𝑟 .

However, for return types we want the least solution. For example, consider the function above.
typ3c infers that an array is being allocated in the call to malloc, and induces the constraints shown
in comments. The greatest solution for 𝑟𝑒𝑡 would be 𝑝𝑡𝑟 ; the least solution would be 𝑎𝑟𝑟 . Choosing
𝑝𝑡𝑟 drops information that could be useful; while 𝑝𝑡𝑟 is correct, it may prevent future uses of getarr
that need to know that it returns an 𝑎𝑟𝑟 . Hence, we want to find the least solution for function
return types.

Solving ptyp constraints. A naive approach of independently picking the least solution for function
return types and the greatest for other pointers does not work because of possible interdepedencies.
For instance, a function’s return type might depend (through constraints) on one of its parameters’
type. We solve ptyp constraints using a novel three-step algorithm. First, the algorithm computes
the greatest solution, fixing the solution of function parameters and resetting the others. Then
it computes the least solution, fixing it for returns.4 Finally, it computes the greatest solution for
what’s left (e.g., local variables and struct fields). Solving is linear time for each step.

Soundness. typ3c aims to be sound, in the sense that its output should be accepted as correct
by the Checked C compiler’s typechecker. 3C is not part of the trusted computing base (TCB), so
mistakes or omissions it makes are not security problemsÐthe Checked C compiler (which is part
of the TCB) will confirm that the converted program is correct. 3C’s soundness argument follows
from the observation that checked pointer types are qualified types, and the core qualifier inference
algorithm that typ3c is based on is sound for the ptyp lattice we use, and works correctly for our
amended kind constraints because of the added casts and itypes (Section 2).

5 BOUNDS INFERENCE BY BOUN3C

The goal of boun3c is to infer a bound for each 𝑎𝑟𝑟 and 𝑛𝑡𝑎𝑟𝑟 pointer inferred by typ3c. The
basic idea is to associate each pointer with a possible bound, and then propagate that association
consistently. boun3c represents a novel kind of correlation analysis [Pratikakis et al. 2006].

5.1 Generating Flow Graphs

boun3c starts by constructing two undirected graphs, the pointer flow graph pfg and the scalar
flow graph sfg, which track the flows of pointer variables and scalar variables (and constants),
respectively. The pfg’s nodes and edges are isomorphic to those in the ptyp constraint graph, where
𝑥 −→ 𝑦 in the ptyp graph induces an undirected edge 𝑥 ÐÐ 𝑦 in the pfg. The pfg also contains
context-sensitive call nodes, one for each argument at a particular call site. We also maintain context-
sensitivity for struct accesses such that all field accesses using the same base expression (e.g., e._
and e->_) will be grouped together. We write P for the set of all pfg nodes and A for the subset of
those nodes whose ptyp solution was either 𝑎𝑟𝑟 or 𝑛𝑡𝑎𝑟𝑟 .
The sfg is like the pfg but only considers expressions involving scalar values. Moreover, the

sfg only considers simple assignments from variables/parameters, fields, or constants to fields,
local variables/parameters, and function-returns; it ignores all other expressions, such as x=y+2

or func(x+y). Figure 3a defines function ProcExpr which processes a function call or assignment
to generate sfg edges via the AddSEdge(𝑛1, 𝑛2) function. The N function translates the allowed

4There are a few cases where we do not use least solution; see the extended report [Machiry et al. 2022].
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N(x) = 𝑥
N(n) = 𝑛

N(fip) = 𝑓 𝑖𝑝
N(e->f) = 𝑓𝑠 ,where type(e) =struct s ∗
N(e.f) = 𝑓𝑠 ,where type(e) =struct s
ProcExpr(𝑓 (𝑒1, ..., 𝑒𝑛)) = ProcExpr(𝑒1), ..., ProcExpr(𝑒𝑛),

AddSEdge(N(𝑒1),N(𝑓
1
𝑝 )), ...,

AddSEdge(N(𝑒𝑛),N(𝑓
𝑛
𝑝 ))

ProcExpr(𝑒1 = 𝑒2) = ProcExpr(𝑒1), ProcExpr(𝑒2),
AddSEdge(N(𝑒2),N(𝑒1))

(a) Expression processing to create the sfg
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Fig. 3. Overview of graph creation in boun3c.

expression types into names for nodes in sfg. (Note: fip is the 𝑖th parameter of function 𝑓 while 𝑛 is
an integer constant.) We write S for the set of all nodes in sfg.

Example. Figure 3b illustrates pfg and sfg for the example in Listing 1(a).5 For ease of under-
standing, we only show the 𝑎𝑟𝑟 and 𝑛𝑡𝑎𝑟𝑟 pointers in the pfg. The squares and dark solid lines are
the nodes and edges of the sfg, while the circles and light solid lines are the nodes and edges of
the pfg and thus require (or are already annotated with) bounds. The dashed lines relate pointers
to their possible bounds; these are not part of the initial graph but are rather constructed during
inference, as discussed below. We can see that the pfg also contains context sensitive call nodes q18,
p25, and q26 corresponding to function calls at lines 18, 25, and 26, respectively. The sfg has nodes
for scalar function parameters and local variables, and also has context-sensitive nodes.

5.2 Bounds Inference

boun3c’s inference algorithm uses the pfg and sfg to infer array bounds. To explain it, we must
define a few terms first.

Node scope and visibility. A pointer v’s bounds are defined in terms of variables or scalars within
v’s lexical scope. We define a pointer’s node scope 𝜛 with the function ns:

ns(v) =




struct s@c (𝜛𝑐
𝑠 ), v is a field of struct 𝑠 at context 𝑐

param of 𝑓@c (𝜛
𝑓𝑐
𝑝 ), v is a parameter to function 𝑓 called at context 𝑐

local of 𝑓 (𝜛
𝑓

𝑙
), v is local variable of 𝑓

global (𝜛𝑔), v is a global or constant

The visibility (vis) of a scope determines the values that can be used in the bounds declaration

of a pointer in the scope. For instance, for a pointer v in function 𝑓 ’s local scope (𝜛
𝑓

𝑙
), v’s bounds

declaration can contain function locals (𝜛
𝑓

𝑙
) and global variables or constants (𝜛𝑔); i.e., vis(𝜛

𝑓

𝑙
) =

5After correcting the recordptr type; see Section 4.2.
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𝑒1 = malloc(𝑒2);
if N(𝑒1) ∉ 𝛽 =⇒ 𝛽 (N(𝑒1)) = (bt, N(𝑒2))

if 𝛽 (N(𝑒1)) ≠ (bt, N(𝑒2)) =⇒ 𝛽𝐼 =𝛽𝐼 ∪ N(𝑒1)
𝑒1 = malloc(𝑒2*sizeof(𝑡𝑦)); ∧ (type(𝑒1) = 𝑡𝑦)

if N(𝑒1) ∉ 𝛽 =⇒ 𝛽 (N(𝑒1)) = (ct, N(𝑒2))

if 𝛽 (N(𝑒1)) ≠ (ct, N(𝑒2)) =⇒ 𝛽𝐼 =𝛽𝐼 ∪ N(𝑒1)
TypeName x[n]; =⇒ 𝛽 (N(x)) = (ct, N(n))

Seeding bounds at memory allocations

Algorithm 1: boun3c bounds inference
(Part 1).
Input: sfg, pfg, A
Output: 𝛽

1 𝛽, 𝛽𝐼 ← SeedBounds()

2 𝛽 ← RunInference(𝛽, 𝛽𝐼 , sfg, pfg,A)

3 𝛽 ← TryHeuristics(𝛽, 𝛽𝐼 )

4 𝛽 ← RunInference(𝛽, 𝛽𝐼 , sfg, pfg,A)

/* Helper functions. */

5 Function RunInference(𝛽 , 𝛽𝐼 , sfg, pfg, A):
6 𝐿 ← FunctionLocalNodes(A)

7 𝐶𝑠 ← CtxSenNodes(A)

8 𝑃 ← CtxSenAndOriginals(A)

9 changed← true

10 while changed do
11 𝛽, lc ← InferBounds(𝛽, 𝛽𝐼 , sfg, pfg, 𝐿)

12 𝛽, csc ← InferBounds(𝛽, 𝛽𝐼 , sfg, pfg, 𝐿 ∪𝐶𝑠 )

13 𝛽, pc ← InferBounds(𝛽, 𝛽𝐼 , sfg, pfg, 𝑃 ∪𝐶𝑠 )

14 changed← lc ∨ csc ∨ pc

15 return 𝛽

{𝜛
𝑓

𝑙
, 𝜛𝑔}. We use context-sensitive scopes for function parameters and structures. Hence, vis(𝜛𝑐

𝑠 ) =

{𝜛𝑐
𝑠 , 𝜛𝑔}; vis(𝜛

𝑓𝑐
𝑝 ) = {𝜛

𝑓𝑐
𝑝 , 𝜛𝑔}; and vis(𝜛𝑔) = {𝜛𝑔}.

Bounds map. The final solution of inference is a map 𝛽 from array pointers to bounds expressions,
i.e., 𝛽 : A⇀ 𝑏. A bounds expression 𝑏 is a pair (𝜗, 𝑠); the second element expresses a numeric value
using a node 𝑠 ∈ S while the first expresses the value’s units, with 𝜗 ∈ {ct, bt} indicating either
count (ct) or byte_count (bt).

5.3 Algorithm

Pseudocode for bounds inference is given in Algorithm 1. The algorithm operates in several steps.
First, SeedBounds (explained next) establishes initial pointer-bounds relationships based on the
program text. Next, RunInference iteratively propagates these bounds throughout the program
using InferBounds until a fixed point is reached. Heuristics are used to seed bounds for pointers
that remain (Section 5.4), and these are (re)propagated.

Seed Bounds. The algorithm initially seeds bounds for pointers for which the bounds are directly
evident in the program text. One source of such bounds are the itypes on standard library functions.
For example, here is bzero’s type:

itype_for_any(T) void bzero(void *dest : itype(array_ptr<T>) byte_count(n), size_t n);

The type indicates that the bounds of the parameter dest is a byte_count defined by parameter n. So
on a call bzero(x,c), the algorithm would set the bounds of x to (bt,c).

The algorithm also seeds bounds for fixed-size arrays and array pointers assigned directly from
malloc, calloc, etc., per the rules in the figure above. Note it uses ct when sizeof is used. The
algorithm only considers allocator calls with simple expression arguments, as indicated by various
N(_) definitions in Figure 3a. Also note that the algorithm discards seed bounds as invalid for array
pointers that are assigned from multiple malloc calls with (syntactically) distinct sizes, as is the case
for p in this example.

int *p = malloc(sizeof(int)*n); ...
p = malloc(sizeof(int)*x);

If discovered, the algorithm stores invalid bounds in the set 𝛽𝐼 and omits them from further steps.
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Bounds propagation. Starting with seeded bounds, boun3c propagates the bounds in a context-
sensitive manner. As shown in Algorithm 1, it first propagates the bounds information within
each function between function-local arrays (Line 11). Second, it tries to infer the bounds of
context-sensitive nodes from function locals (Line 12). Finally, it propagates bounds information
from context-sensitive nodes to the corresponding original nodes (Line 13). The propagation
of the bounds is done by the InferBounds function, which aims to compute the set of possible
bounds (𝐶𝐵) for each of the array pointers. The algorithm for InferBounds function is shown
in Algorithm 2. It starts by identifying all array pointers (𝐴) that still need bounds (Line 2) and
for each pointer 𝑐 , at Line 8, it finds all the neighbor pointers from pfg that are identified as
arrays (i.e., ∈ 𝐴). Next, using reachability in sfg, it finds all visible, in-scope nodes (Line 12) to
which the bounds of a neighbor flow (Lines 10-13). It maintains the set of common bounds that
all neighbors agree on (Line 14). Finally (Lines 18-19), pointers with a single common bound
(preferring those in the same scope as the pointer) are updated in the map. The purpose of other
auxiliary function, i.e., GetBoundsFlow, GetCommonBoundsSet, and FindBounds is obvious from
their name; pseudocode is given in the extended report [Machiry et al. 2022].

Algorithm 2: boun3c bounds inference (Part 2).

1 Function InferBounds(𝛽 , 𝛽𝐼 , sfg, pfg, A𝑐):
/* Array pointers that need bounds. */

2 𝐴← {𝑐 | (𝑐 ∈ A𝑐 ) ∧ (𝑐 ∉ 𝛽) ∧ (𝑐 ∉ 𝛽𝐼 ) }

/* Set bounds to a empty set. */

3 ∀𝑐 ∈ 𝐴 : 𝐶𝐵 (𝑐) ← ∅

4 changed← true

5 while changed do
6 changed← false

7 for 𝑐 ∈ 𝐴 do
8 𝑁𝑎

𝑐 ← pfg.arr_neighbors(𝑐)

9 𝑆𝑆𝐵𝑐 ← ∅

10 for 𝑐𝑖 ∈ 𝑁
𝑎
𝑐 do

11 𝐵𝑐𝑖 ← FindBounds(𝑐𝑖 , 𝛽,𝐶𝐵)

12 𝐹𝐵𝑐𝑖 ← GetBoundsFlow(𝑐, 𝐵𝑐𝑖 )

13 𝑆𝑆𝐵𝑐 ← 𝑆𝑆𝐵𝑐 ∪ {𝐹𝐵𝑐𝑖 }

14 𝐵𝑐 ← GetCommonBoundsSet(𝑆𝑆𝐵𝑐 )

15 if 𝐵𝑐 ≠ 𝐶𝐵 (𝑐) then
16 𝐶𝐵 (𝑐) ← 𝐵𝑐

17 changed← true

/* Find the common bounds variable. */

18 for 𝑐 ∈ 𝐴 do
19 𝑉𝐵𝑐 ← {(𝜗, 𝑠) | (𝜗, 𝑠) ∈ 𝐶𝐵 (𝑐) ∧ (ns (𝑠) = ns (𝑐)) }

20 if |𝑉𝐵𝑐 | = 1 then
21 𝛽 (𝑐) ← first(𝑉𝐵𝑐 )

22 else if |𝐶𝐵 (𝑐) | = 1 then
23 𝛽 (𝑐) ← first(𝐶𝐵 (𝑐))

/* Flag to indicate new bounds. */

24 added← (∃𝑐 | 𝑐 ∈ A𝑐 ∧ 𝑐 ∈ 𝛽)

25 return 𝛽, added

Example. For the example in Fig-
ure 3b, the only seed bound is z for
r due to the malloc call on line 24 of
Listing 1(a). It is depicted as a dashed
line with a closed circle in the fig-
ure. After inserting it in the map,
𝛽 (𝑟 ) = (ct, 𝑧), the algorithm propa-
gates the bounds to context-sensitive
arguments 𝑝25 and 𝑞26, which are
neighbors to r in the pfg due to
calls on line 25 and 26 respectively.
This results in 𝛽 (𝑝25) = (ct, 𝑛25) and
𝛽 (𝑞26) = (ct, 𝑙26).

Next, the algorithm propagates the
bounds from context-sensitive pa-
rameter 𝑝25 to 𝑝 as (ct, 𝑛). The next
iteration propagates the information
from 𝑝 to 𝑞18. Finally, for 𝑞, with
neighbors 𝑞26 and 𝑞18, whose bounds
flow into a common variable 𝑙 , the al-
gorithm infers bounds to be 𝛽 (𝑞) =

(ct, 𝑙). The computed solution yields
the code in Listing 1(c).

5.4 Partial Soundness,

Heuristics

The boun3c algorithm discussed so far aims to be partially sound, in the sense that if a bound is
inferred, it is correct; possibly-incorrect bounds are omitted. This argument follows from the sound-
ness argument of correlation inference, the core algorithm to which boun3c is related [Pratikakis
et al. 2011]. Since missing bounds necessitate additional manual work (Section 3), we developed
heuristics that, when applied in the presented order, add likely-correct bounds to array pointers
𝑎𝑟𝑟 that lack them.
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Table 1. Examples of boun3c heuristics.

Consistent Upper Bound Name Prefix

Code :
if (i < 64) {

p[i] = ...
}

if (j >= 𝑛)

return -1;
x = p[j] + 2;

for (i=0; i < 𝑠; i++)
sum += p[i];

struct foo {
struct bar *p;
...
unsigned p_len;

}

struct baz {
int *p;
...
unsigned psize;

}

𝛽 (p) = (ct, N(64)) (ct, N(n)) (ct, N(s)) (ct, N(p_len)) (ct, N(psize))

Consistent upper bound (CUB). The idea is to identify a variable or constant that represents the
maximum value of an index used to access a given array. Specifically, if index variables used to
access an array 𝑐 are always upper bounded by the same variable 𝑢𝑏 then 𝑢𝑏 will be considered as
the ct bound for 𝑐 . Few examples are shown in the left half of Table 1.

Name prefix (NPr). For an array field of struct 𝑠 with name 𝑓𝑛 , we try to find another scalar field
𝑓 2 with name 𝑓 2𝑛 such that 𝑓 2𝑛 starts with 𝑓𝑛 and contains a count-evoking keyword, e.g., len or
size. This rule can be informally written as: 𝑓 2𝑛 .startswith (𝑓𝑛) ∧ 𝑓 2𝑛 .match("len"|"size")
Few examples are shown in the right half of Table 1.

Next parameter (NePa). Arrays are often passed to functions with their lengths. For an 𝑎𝑟𝑟

function parameter c, the immediate parameter to its right, say p, is considered as c’s ct bound if p
is a scalar, and not involved in any arithmetic or bitwise operations (to avoid scalar parameters
that are flags).

6 EVALUATION

We implemented 3C as part of the Secure Software Development Project (SSDP)’s open-source fork
of Checked C’s extended clang compiler [repo 2022]. 3C adds 13K lines of (single-threaded) C++
(per SLOCCount) to the compiler’s codebase. Given a set of source files, 3C runs typ3c and boun3c
and rewrites the files (including #included project headers) with Checked C type annotations.
In this section, we evaluate 3C as follows, measuring

• (Performance of 3C) how long it takes to run 3C on the benchmark programs, and the relative
contribution of various phases of typ3c and boun3c to the total time (Section 6.2);
• (Effectiveness of typ3c) how often typ3c infers checked pointers, and the contribution of each
of our improvements to the result (Section 6.3);
• (Effectiveness of boun3c) how often boun3c infers bounds on array (𝑎𝑟𝑟 ) and null-terminated
array (𝑛𝑡𝑎𝑟𝑟 ) pointers and how much heuristics help (Section 6.4);
• (Quality of identified types) how well 3C infers annotations compared to those chosen by
hand, in previously ported code [Tarditi et al. 2018];

We qualitatively evaluate the effectiveness of our iterative porting process by reporting on
experience porting thttpd (which contains an exploitable vulnerability), icecast, and vsftpd;
as far as we are aware, these are the three largest programs ported to Checked C. We also discuss
a port of a smaller program, tiny-bignum; the porting process uncovered two spatial safety
vulnerabilities therein.

6.1 Experimental Setup

We use the programs listed in Table 2 for our evaluation. Most of these programs were suggested
by the Checked C team [Microsoft 2019] as good porting targets. All experiments were run on an
AMD EPYC 7B12 machine with 8GB RAM running Ubuntu 20.04.
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Table 2. Benchmark programs. Total Pointers (TP) counts convertible pointers; e.g., TP(int **p) = 2.

Program Category Size Total Ptrs Num

(SLOC) (TP) Files (.c & .h)

vsftpd FTP Server 14.7K 1,765 78

icecast Media Server 18.2K 2,682 72

lua Interpreter 19.4K 4,176 57

olden Data-structure benchmark 10.2K 832 51

parson Json parser 2.5K 686 3

ptrdist Pointer-use benchmark 9.3K 920 39

zlib Compression Library 21.3K 647 25

libtiff Image Library 68.2K 3,478 43

libarchive Archiving library 146.8K 10,269 149

thttpd HTTP Server 7.6K 829 18

tinybignum Integer Library 1.4K 129 7

Total 319.6K 26,413 542

Table 3. Time split (in seconds) of various phases of 3c. We ran each benchmark seven times and picked

the median. RC Comp indicates time for computing root causes and SIQR [Bingham 1996] is the Semi

Inter-Quantile Range of the total time over seven runs. All percentages are corresponding to the total time.

Program Setup
Constraints
Building

Constraints
Solving

Bounds
Inference

Rewriting
RC

Comp
Total

Time (s)
SIQR (s)

vsftpd 1.06 (35.7%) 0.45 (15.0%) 0.18 (6.1%) 0.23 (7.9%) 0.94 (31.8%) 0.07 (2.5%) 2.96 0.26 (8.9%)
icecast 6.41 (46.9%) 1.2 (8.8%) 1.46 (10.7%) 1.05 (7.7%) 2.66 (19.5%) 0.63 (4.6%) 13.66 1.02 (7.5%)
lua 2.19 (37.7%) 0.98 (16.9%) 0.38 (6.6%) 0.76 (13.0%) 1.25 (21.5%) 0.16 (2.8%) 5.81 0.79 (13.5%)

olden 1.57 (63.4%) 0.23 (9.5%) 0.22 (9.1%) 0.1 (4.2%) 0.25 (10.1%) 0.06 (2.5%) 2.47 0.04 (1.6%)
parson 0.21 (39.3%) 0.12 (23.6%) 0.03 (5.1%) 0.09 (17.2%) 0.06 (12.1%) 0.02 (4.6%) 0.53 0.07 (13.5%)
ptrdist 1.12 (54.2%) 0.34 (16.3%) 0.19 (9.3%) 0.14 (6.6%) 0.21 (10.4%) 0.05 (2.5%) 2.06 0.12 (5.7%)
zlib 0.87 (47.3%) 0.44 (23.9%) 0.11 (6.2%) 0.12 (6.5%) 0.21 (11.7%) 0.05 (2.5%) 1.83 0.22 (11.9%)
libtiff 3.26 (38.1%) 1.58 (18.5%) 0.65 (7.6%) 0.75 (8.8%) 1.6 (18.7%) 0.55 (6.4%) 8.55 1.32 (15.4%)

libarchive 14.63 (33.5%) 4.02 (9.2%) 2.91 (6.6%) 6.2 (14.2%) 13.94 (31.9%) 1.31 (3.0%) 43.74 5.75 (13.1%)
thttpd 1.02 (42.2%) 0.51 (21.1%) 0.15 (6.1%) 0.36 (14.7%) 0.28 (11.6%) 0.06 (2.6%) 2.41 0.26 (10.6%)

tinybignum 0.24 (52.6%) 0.07 (14.3%) 0.06 (12.9%) 0.02 (4.4%) 0.06 (12.2%) 0.01 (3.1%) 0.46 0.05 (10.9%)

Total 32.57 (38.5%) 9.93 (11.8%) 6.34 (7.5%) 9.82 (11.6%) 21.47 (25.4%) 2.99 (3.5%) 84.49 9.9 (11.7%)

Handling Pointers in Macro Expansions. 3C rewriting leverages a clang library, which unfortu-
nately does not support rewriting within macro definitions or expansions. Thus, typ3c labels all
pointers 𝑝 used in macros as𝑤𝑖𝑙𝑑 (by adding a𝑊 −→ 𝑝 constraint). Doing so may induce pointers
dependent on 𝑝 to be𝑤𝑖𝑙𝑑 . To sidestep this limitation and faithfully assess 3C effectiveness, in the
next two sections we use a custom tool to expand all uses of macros in the program source (but
making no other changes). We emphasize that macro expansion is not required for 3C. Running 3C
on the non-preprocessed programs results in a similar detection rate of 𝑐ℎ𝑘 pointers. Details are in
the extended report [Machiry et al. 2022].

6.2 Performance

Table 3 shows the time taken (in seconds) by 3C for each of our benchmarks. The table also
shows the split of the total time across various phases. Setup comprises parsing, preparing, and
typechecking the input files; Constraints Building and Constraints Solving comprise the two phases
of typ3c, building and solving the qualifier constraint graph; Bounds Inference is boun3c’s bounds
inference; Rewriting comprises rewriting the input files with inferred checked pointers and bounds;
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Table 4. Pointers inferred by typ3c to be 𝑐ℎ𝑘 (typ3c) vs when the node pairs (Section 4.1) on functions

are disabled (typ3c𝑓 ) vs previous work (CCured) and breakdown of pointer types inferred by typ3c.

Program
Total

Pointers
(TP)

Checked pointers (𝑐ℎ𝑘)
(% of TP)

Split of Identified Checked Pointer Types
(% of typ3c)

typ3c typ3c𝑓 CCured ptr arr ntarr

vsftpd 1,765 1,336 (75.7%) 1,226 (69.5%) 999 (56.6%) 1,199 (89.7%) 44 (3.3%) 93 (7.0%)
icecast 2,682 1,795 (66.9%) 1,670 (62.3%) 1,377 (51.3%) 1,429 (79.6%) 54 (3.0%) 312 (17.4%)
lua 4,176 2,781 (66.6%) 2,248 (53.8%) 1,771 (42.4%) 2,273 (81.7%) 254 (9.1%) 254 (9.1%)

olden 832 721 (86.7%) 709 (85.2%) 709 (85.2%) 571 (79.2%) 130 (18.0%) 20 (2.8%)
parson 686 507 (73.9%) 425 (62.0%) 291 (42.4%) 405 (79.9%) 9 (1.8%) 93 (18.3%)
ptrdist 920 684 (74.3%) 652 (70.9%) 623 (67.7%) 465 (68.0%) 181 (26.5%) 38 (5.6%)
zlib 647 385 (59.5%) 375 (58.0%) 337 (52.1%) 293 (76.1%) 86 (22.3%) 6 (1.6%)
libtiff 3,478 2,111 (60.7%) 2,016 (58.0%) 1,194 (34.3%) 1,694 (80.2%) 177 (8.4%) 240 (11.4%)

libarchive 10,269 6,842 (66.6%) 6,190 (60.3%) 4,924 (48.0%) 5,532 (80.9%) 896 (13.1%) 414 (6.1%)
thttpd 829 634 (76.5%) 616 (74.3%) 449 (54.2%) 341 (53.8%) 57 (9.0%) 236 (37.2%)

tinybignum 129 128 (99.2%) 117 (90.7%) 117 (90.7%) 110 (85.9%) 3 (2.3%) 15 (11.7%)

Total 26,413 17,924 (67.9%) 16,244 (61.5%) 12,791 (48.4%) 14,312 (79.8%) 1,891 (10.6%) 1,721 (9.6%)

and RC is the root-cause analysis. We ran 3C seven times, reporting the median and the Semi
Inter-Quantile Range (SIQR) [Bingham 1996] to express timing variation.
For most benchmarks, 3C took less than 10 seconds with an SIQR ≤ 15% of the total time,

indicating minor timing variation. These times could be improved, but most are fast enough for
interactive porting, since the manual work takes a few minutes or more between runs. Running
times generally track a project’s code size, but not always. For example, though icecast and lua
have similar SLOC and file counts, their setup times are very different. This is because SLOC counts
in Table 2 ignore non project-specific header files, which can be voluminous. We computed project
size post pre-processing and found that icecast is about 900K LOC by this measure while lua is
231K; icecast relies on a large number of external libraries with many headers included by each
of its source files. As another comparison point, libtiff has higher SLOC than icecast, but its
post-processing size is much smaller, at 347K.

6.3 Effectiveness of typ3c

As explained in Section 4, typ3c generates and solves two sets of constraints: for each pointer 𝑐 , the
solution to the kind constraints determines whether 𝑐 is checked (else it’s𝑤𝑖𝑙𝑑), while the solution
to the ptyp constraints gives the exact checked type (i.e., 𝑝𝑡𝑟 , 𝑎𝑟𝑟 , or 𝑛𝑡𝑎𝑟𝑟 ).

6.3.1 Kind Constraints. The left half of Table 4 shows that typ3c was able to infer 67.9% of all
pointers as 𝑐ℎ𝑘 , which is 19.5% more than the unification-based algorithms used in past work, e.g.,
CCured [Necula et al. 2005]. We attribute the improved detection rate to our two improvements
over the default approach. Specifically, as indicated by the typ3c𝑓 column, we were able to infer
an additional 6.4% (67.9%-61.5%) of 𝑐ℎ𝑘 pointers by maintaining two constraint variables for
parameter and return values (Section 4.1), and an additional 13.1% (61.5%-48.4%) of 𝑐ℎ𝑘 pointers
over unification-style analysis (the łbasic approachž of Section 4.1).
Although typ3c was able to infer more checked pointers than other techniques, there are still

a considerable number (32.1%) of pointers left as 𝑤𝑖𝑙𝑑 . These arise because of relatively fewer
root-cause pointersÐonly 2,333 (8.8%), which can be the focus of an iterative port (Section 4.2). Many
of these root causes arise for the same reasons, such as unsafe casts, and conversion to void; there
were 91 unique reasons in total. We present a comprehensive analysis of these𝑤𝑖𝑙𝑑 pointers in the
extended report [Machiry et al. 2022].
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Table 5. Number of required bounds (𝑅𝐵) that boun3c inferred for 𝑎𝑟𝑟 and 𝑛𝑡𝑎𝑟𝑟 pointers, and in what phase

of inference (seed ing, during flow, or via heuristics).

Program

Arrays (arr) Null-terminated arrays (ntarr)
Require
Bounds
(𝑅𝐵𝑎 )

Inferred Bounds Require
Bounds
(𝑅𝐵𝑛 )

Inferred Bounds
Total

(% of 𝑅𝐵𝑎 )
Technique (% of Total) Total

(% of 𝑅𝐵𝑛 )
Technique (% of Total)

Seeded Flow Heuristics Seeded Flow

vsftpd 30 26 (86.7%) 15 (57.7%) 6 (23.1%) 5 (19.2%) 27 18 (66.7%) 17 (94.4%) 1 (5.6%)
icecast 29 20 (69.0%) 16 (80.0%) 4 (20.0%) 0 (0.0%) 159 59 (37.1%) 48 (81.4%) 11 (18.6%)
lua 146 79 (54.1%) 61 (77.2%) 18 (22.8%) 0 (0.0%) 99 28 (28.3%) 18 (64.3%) 10 (35.7%)

olden 91 87 (95.6%) 68 (78.2%) 19 (21.8%) 0 (0.0%) 0 0 (0.0%) 0 (0.0%) 0 (0.0%)
parson 2 2 (100.0%) 2 (100.0%) 0 (0.0%) 0 (0.0%) 33 22 (66.7%) 12 (54.5%) 10 (45.5%)
ptrdist 127 91 (71.7%) 53 (58.2%) 38 (41.8%) 0 (0.0%) 11 7 (63.6%) 4 (57.1%) 3 (42.9%)
zlib 52 50 (96.2%) 37 (74.0%) 12 (24.0%) 1 (2.0%) 1 0 (0.0%) 0 (0.0%) 0 (0.0%)
libtiff 65 62 (95.4%) 42 (67.7%) 20 (32.3%) 0 (0.0%) 145 145 (100.0%) 144 (99.3%) 1 (0.7%)

libarchive 449 347 (77.3%) 255 (73.5%) 83 (23.9%) 9 (2.6%) 112 40 (35.7%) 27 (67.5%) 13 (32.5%)
thttpd 31 26 (83.9%) 19 (73.1%) 7 (26.9%) 0 (0.0%) 127 96 (75.6%) 61 (63.5%) 35 (36.5%)

tinybignum 2 2 (100.0%) 2 (100.0%) 0 (0.0%) 0 (0.0%) 13 13 (100.0%) 13 (100.0%) 0 (0.0%)

Total 1,024 792 (77.3%) 570 (72.0%) 207 (26.1%) 15 (1.9%) 727 428 (58.9%) 344 (47.3%) 84 (11.6%)

6.3.2 Ptyp Constraints. The right half of Table 4 shows the pointer typesś𝑝𝑡𝑟 , 𝑎𝑟𝑟 , or 𝑛𝑡𝑎𝑟𝑟Ðthat
typ3c infers for 𝑐ℎ𝑘 pointers. The majority (79.8%) are 𝑝𝑡𝑟 , with 𝑎𝑟𝑟 and 𝑛𝑡𝑎𝑟𝑟 roughly equal at
nearly 10%. These types are determined by typ3c’s three-step solving algorithm, described in
Section 4.3.
As explained in Section 4.3, typ3c’s solving algorithm produces the most general types for all

checked pointers. Had it used the least solution instead (as is typical in qualifier inference [Foster
et al. 2006]), the solution would have been very different: 37% 𝑝𝑡𝑟 , 37% 𝑎𝑟𝑟 , and 26% 𝑛𝑡𝑎𝑟𝑟 . This
solution is still valid, but the increased number of 𝑎𝑟𝑟 and𝑛𝑡𝑎𝑟𝑟 pointers has at least three downsides.
First, when these are used for function parameter types, they limit future callers; e.g., a function
foo(ptr<int> p) is more general (can be called withmore pointer types) than foo(nt_arr_ptr<int> p).
Second, 𝑛𝑡𝑎𝑟𝑟 occurs relatively rarely in C code, in our experience; hence, even when returning
an 𝑛𝑡𝑎𝑟𝑟 is strictly more general than returning a 𝑝𝑡𝑟 , it was probably not what the programmer
intended. Last, 𝑛𝑡𝑎𝑟𝑟 pointers require bounds; if the programmer’s intention was really for most of
these to be 𝑝𝑡𝑟 , then boun3c is not going to succeed. Further discussion on these points can be
found in the extended report [Machiry et al. 2022].

6.4 Effectiveness of boun3c

Table 5 tabulates the bounds annotations inferred by boun3c for 𝑎𝑟𝑟 and 𝑛𝑡𝑎𝑟𝑟 pointers inferred
by typ3c. We categorize inferred bounds according to whether they were initial seeds (Section 5.3a),
determined by propagating flows (Section 5.3b), or chosen by heuristics (Section 5.4). We limit our
attention to pointers that require bounds (𝑅𝐵). In Checked C, bounds attach to the outermost type,
and nested 𝑎𝑟𝑟 / 𝑛𝑡𝑎𝑟𝑟 pointers cannot have them; for example,

array_ptr<nt_array_ptr<char>> argv : count(argc)

has no bound for the inner 𝑛𝑡𝑎𝑟𝑟 .

Array pointers (𝑎𝑟𝑟 ). On average, boun3c successfully identified bounds for 77.3% of the 𝑎𝑟𝑟
pointers.

Only 1.89% of inferred bounds owed to using heuristics for three benchmarks. Table 6 shows the
relative effectiveness of each of our heuristics for the affected benchmarks. We manually checked
a sample of these and confirmed them to be valid. An example is shown in Listing 3, boun3c’s
consistent upper bound heuristic noticed that the index of the p_in 𝑎𝑟𝑟 is always upper bounded
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Table 6. Effectiveness of heuristics in bounds inference.

Program Total NPr NePa CUB

vsftpd 5 0 (0.0%) 0 (0.0%) 5 (100.0%)
zlib 1 0 (0.0%) 1 (100.0%) 0 (0.0%)

libarchive 9 2 (22.2%) 3 (33.3%) 4 (44.4%)

Total 15 2 (13.3%) 4 (26.7%) 9 (60.0%)

struct bin_to_ascii_ret
vsf_ascii_bin_to_ascii(
const char *p_in,
...,
unsigned int in_len,...) {
úwhile (indexx < in_len) {
char the_char = p_in[indexx];
...

}
}

(b) Code matching (ú) CUB heuristic

struct bin_to_ascii_ret
vsf_ascii_bin_to_ascii(
(ËCUB)_Array_ptr<const char> p_in : count(in_len),
...,
unsigned int in_len,...)

(c) Bounds inferred by CUB

Listing 3. Bounds inferred by Consistent Upper Bound (CUB) heuristic in vsftpd.

by another parameter in_len in this vsftpd code (Listing 3 (a)). The inferred bounds on p_in are
shown in Listing 3 (b).

Indeed, boun3c performed well on average, but less well on icecast (69% of bounds inferred)
and lua (54.1%). The situation was similar in both cases: most arrays are allocated using an
arithmetic expression, as in this example:

ptr = (char *)malloc(n*m);

The bounds of ptr should be n*m, but boun3c can only infer bounds that are a single variable or
constant. This missing seed bound likely had negative downstream effects.

Null-terminated array pointers (𝑛𝑡𝑎𝑟𝑟 ). boun3c inferred bounds for 58.9% of the 𝑛𝑡𝑎𝑟𝑟 pointers,
on average. Although the detection is relatively less than regular 𝑎𝑟𝑟 pointers, we do not consider
this as necessarily inferior. Most of the 𝑛𝑡𝑎𝑟𝑟s in our benchmark programs are strings whose bound
is discovered through use, so no explicit bound is needed; e.g., functions such as argparse, which
process a string byte by byte and checking for the null terminator as they go.

This is good because maintaining explicit length variables increases the burden on the developer
to update the length on every string manipulation and consequently increases the chances of
introducing bugs. One of the effective ways to infer the length of char* 𝑛𝑡𝑎𝑟𝑟s could be based on
specific handling of str* library functions. Doing so has limited ceiling at present, though, due to
weaknesses in Checked C’s ability to reason about length-extending arithmetic (which the compiler
team is addressing).

Inferring other types of bounds annotations. boun3c is currently limited to inferring count()

annotations on (nt)arrays; unfortunately, if p is modified by pointer arithmetic (e.g., p++), it cannot be
given such a bounds annotation. We have been developing a feature that infers bounds() annotations,
for pointers used in arithmetic. It works by first attempting to find another pointer in the same
scope that could act as a lower bound. For example, if p might have had bound count(c) but could
not because p is subject to pointer arithmetic, but pointer q is a lower bound for p then p’s bound
can be bounds(q,q+c). If no such q exists, we can replace the introduction of p within a function
with a fresh q (having a count(c) bound), and then introduce p in the same scope as a local variable
that uses q as its lower bound, i.e., array_ptr<T> p : bounds(q,q+c) = q. Then pointer arithmetic on
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Table 7. Comparison of the effectiveness of 3C against completemanual port of Olden and Ptrdist benchmarks.

We report the effort in terms of number of Refactored source lines, number of lines Annotated with Checked C

pointer types along with number of checked pointers annotated, added Bounds and Casts. Refer to Section 6.5

for the meaning of different Variations.

Program Variation
Source changes Pointers

Bounds Casts
Refactored Annotated Left ptr arr ntarr wild

Olden

bh manual 136 (10.44 %) 45 (3.44 %) - 135 54 3 0 49 10
bh 3c (revert) - 48 (3.66 %) 30 (2.29 %) 135 54 3 0 49 11
bh 3c (orig) - 103 (7.90 %) 105 (8.03 %) 132 54 3 0 49 16

bisort manual 57 (21.43 %) 35 (13.73 %) - 44 2 2 0 0 0
bisort 3c (revert) - 34 (13.33 %) 1 (0.39 %) 44 2 2 0 0 1
bisort 3c (orig) - 51 (19.17 %) 49 (19.22 %) 32 2 2 1 0 3
em3d manual 170 (37.04 %) 88 (17.74 %) - 61 31 3 0 24 6
em3d 3c (revert) - 88 (17.74 %) 34 (6.88 %) 64 29 2 0 20 8
em3d 3c (orig) - 76 (16.56 %) 158 (34.50 %) 63 30 2 2 17 12
health manual 42 (11.38 %) 57 (15.62 %) - 70 7 3 0 4 0
health 3c (revert) - 57 (15.62 %) 0 (0.00 %) 72 6 2 0 4 0
health 3c (orig) - 57 (15.45 %) 24 (6.50 %) 72 6 2 0 4 3
mst manual 133 (40.43 %) 28 (8.33 %) - 44 8 4 0 6 3
mst 3c (revert) - 28 (8.33 %) 4 (1.19 %) 46 7 3 0 5 1
mst 3c (tweak) 19 (5.78 %) 52 (16.51 %) 91 (28.53 %) 39 13 2 5 9 5
mst 3c (orig) - 42 (12.77 %) 116 (34.94 %) 29 14 2 16 8 3

perimeter manual 34 (10.27 %) 10 (3.03 %) - 26 2 2 0 0 0
perimeter 3c (revert) - 10 (3.03 %) 0 (0.00 %) 26 2 2 0 0 0
perimeter 3c (orig) - 23 (6.95 %) 26 (7.81 %) 26 2 2 1 0 1
power manual 53 (11.67 %) 30 (6.55 %) - 35 21 1 0 8 0
power 3c (revert) - 30 (6.55 %) 0 (0.00 %) 41 15 1 0 8 0
power 3c (orig) - 55 (12.11 %) 37 (8.08 %) 41 15 1 0 8 4
treeadd manual 30 (20.98 %) 16 (11.03 %) - 12 2 2 0 0 0
treeadd 3c (revert) - 16 (11.03 %) 0 (0.00 %) 12 2 2 0 0 0
treeadd 3c (orig) - 18 (12.59 %) 24 (16.67 %) 12 2 2 2 0 3
tsp manual 68 (16.15 %) 10 (2.38 %) - 66 3 3 0 0 0
tsp 3c (revert) - 9 (2.14 %) 1 (0.24 %) 68 2 2 0 0 0
tsp 3c (orig) - 42 (9.98 %) 31 (7.35 %) 68 2 2 1 0 1

Ptrdist

anagram manual 90 (26.87 %) 52 (14.48 %) - 16 32 4 4 21 0
anagram 3c (revert) - 28 (7.80 %) 37 (10.36 %) 15 12 7 22 6 6
anagram 3c (orig) - 28 (8.36 %) 97 (28.96 %) 12 13 7 12 6 3

ft manual 147 (16.63 %) 122 (13.74 %) - 169 2 1 0 1 4
ft 3c (revert) - 122 (13.74 %) 0 (0.00 %) 169 2 1 0 1 0
ft 3c (orig) - 126 (14.25 %) 146 (16.57 %) 169 2 1 0 1 4
ks manual 85 (17.03 %) 35 (7.06 %) - 56 15 6 0 13 4
ks 3c (revert) - 35 (7.06 %) 11 (2.22 %) 57 15 4 1 13 3
ks 3c (orig) - 64 (12.83 %) 86 (17.23 %) 56 15 5 1 13 8

yacr2 manual 280 (12.69 %) 157 (7.07 %) - 15 135 5 0 57 0
yacr2 3c (revert) - 195 (8.78 %) 143 (6.44 %) 54 93 4 4 19 42
yacr2 3c (orig) - 190 (8.61 %) 389 (17.64 %) 53 88 4 13 10 62

p in the sequel will be accepted. We ran a prototype version of this feature over our benchmarks
and found that it adds 134 additional bounds, increasing the total percentage of inferred bounds
by 17%, over all the benchmarks. We plan to develop this feature further in future work.

6.5 Understanding Annotation Quality

As mentioned in Section 3, completely porting a program from C to Checked C involves both
refactoring and annotation; 3C aims to automate the latter. Its effectiveness at doing so can be
negatively impacted by the presence of certain idioms in the original source code. For example, the
use of a custom allocator will harm typ3c performance because malloc has a generic itype but the
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custom allocator will not, and it will harm bounds inference because boun3c will not see a seed
bound (Section 5.3).

As such, an unchanged C program constitutes the worst case for 3C performance, whereas a fully
refactored (but unannotated) program constitutes the best case. To understand 3C’s performance
in these two situations, we carried out an experiment using Ptrdist and Olden benchmarks, which
were previously ported to Checked C [Tarditi et al. 2018]. Table 7 contains results; we explain the
experiment as we explain the table.6

First, we started with the original program, and the manual port. This is the first row in each
program grouping in the table. The rightmost columns indicate how many 𝑝𝑡𝑟 , 𝑎𝑟𝑟 , etc. pointers,
bounds, and other Checked C features are in the Checked C version. The Source Changes Refactored
column indicates the number of lines that changed from the original program, ignoring annotations.
To compute this number, we reverted the manual port from Checked C back to C, stripping away
the Checked C annotations, and counted the updated/added/deleted lines (ignoring whitespace
and linebreaks) in the diff with the original. The Annotated column considers the diff between
the reverted version and the manual port. Looking at bh, 136 lines were refactored, and 45 were
annotated. These 45 annotated lines involved 192 pointers, per the rightmost columns of the table;
this is because multiple pointers occur on the same line, or share the same (checked) typedef.
The latter 3 lines of a grouping capture the performance of 3C. The 3c(revert) line considers

running 3C on the reverted version; as mentioned above, this is the best-case scenario. Annotated
indicates how many lines 3C annotated, and the pointer counts indicate annotation inference
counts. The Left column counts the diff between the 3C-annotated version and the manual port. A
diff of 0 in this column indicates that 3C perfectly inferred (highlighted) all of the pointers and
bounds in the manual port; we see this result for health, perimeter, power, treeadd, and ft,
while bisort, mst, and tsp had 1 or 4 diffed lines, only. anagram does the worst, with 10.36% of
the lines to change, left; it uses a complicated pointer arithmetic scheme that requires Checked C
bounds expressions that boun3c is unable to infer.
The 3c(orig) line considers 3C when run on the original program, prior to refactoring it; this

matches the scenario in which we ran 3C in Sections 6.3 and 6.4, above, and is its worst-case
scenario. We can see that 3c(orig) tends to leave more Left compared to 3c(revert), in part because
the refactoring from manual is still to be done. Such refactoring sometimes involves adding new
local-variable pointers or changing parameter types, e.g., to support bounds for pointer arithmetic;
this is what happens with anagram, and is the reason that there are more pointers overall, and
more wild pointers in particular, in the 3c(revert) row than the 3c(orig). The lack of refactoring also
tends to make pointer and bounds inference a little worse. Nevertheless, the results for 3c(orig)
are in the same ballpark as 3c(revert), providing some context for the results given in Sections 6.3
and 6.4.
Lastly, for mst, we introduce a 3c(tweak) case, illustrating the benefits of our preferred porting

process’s Phase 1 (Section 3): After running 3C on the original code, the developer changes that
original code according to an influential root cause, and then reruns 3C. Here, we switched to use
the system malloc rather than the custom allocator that was added; the size of the change is in the
Refactored column. This change permitted a substantial number of additional checked pointers to
be inferred, and an additional bound.
The rightmost two columns tabulate added bounds and casts. The general trend is that the

manual port tends to have the most bounds, the 3c(revert) version has equal or fewer, and the
3c(orig) version has fewer still. One interesting exception is mst. This is because 3C ’s handling of

6These results are over macro-expanded code; without macro expansion the diffs tend to be smaller. We also do not count

one-off unchecked annotations in any of the diffs, since 3C does not infer these.
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Table 8. Impact of various phases of 3C

Program Step
Source Changes (LOC) Pointers Root Causes

Manual 3C ptr arr ntarr wild Num Avg

vsftpd

3c (Initial) - 1760 1220 46 98 441 304 21.4

Phase 1 367 1616 1261 82 179 290 224 4.5

Phase 2 1889 1407 177 240 97 96 1.2

thttpd

3c (Initial) - 704 338 57 236 198 136 29.6

Phase 1 708 771 392 75 348 58 53 1.9

Phase 2 1450 398 87 468 15 25 1.6

icecast

3c (Initial) - 2102 1424 54 312 887 1142 51.2

Phase 1 168 5529 1667 62 330 636 874 37.0

Phase 2 2592 1829 70 523 328 266 4.0

typedefs involving arrays allows it to infer more bounds than were present in the manual port; the
programmer had left off bounds entirely and worked around doing so by adding unchecked blocks.
3C discovered an improvement to this approach.

6.6 Porting Programs with 3C

We used 3C to help carry out iterative, complete ports of four programs: vsftpd, thttpd, icecast,
and tiny-bignum. For the vsftpd, thttpd, and icecast we followed the two-phase workflow
discussed in Section 3; tiny-bignum converted almost entirely in one step. Table 8 summarizes
the impact of each phase (explained below). All four ports, including the revision history detailing
each step, are freely available.7

These ports were carried out by the second (vsftpd and thttpd), fourth (icecast), and third
(tiny-bignum) authors. The first two of these, who carried out the bulk of the work, are recent
computer science degree holders, and are very proficient in C and Linux. The third is more senior,
but tiny-bignum ended up requiring almost no manual effort. All three authors were familiar with
3C and contributed to its development, but none were familiar with the target programs before
trying to port them. We view our experience as showing promise; future controlled studies could
provide more definitive results. We do have some informal experience with non-authors using 3C
on other programs, and that experience affirmed our approach.

vsftpd. The first row of the table shows the effect of initially running 3C on vsftpd: It inferred
1220 𝑝𝑡𝑟 , 46 𝑎𝑟𝑟 , and 98 𝑛𝑡𝑎𝑟𝑟 checked pointers, compared to 441𝑤𝑖𝑙𝑑 pointers,8 with 304 identified
root causes of wildness influencing, on average, 21.4 other pointers to be deemed wild. 1760 LoC
were updated by 3C.

During Phase 1, we examined the most influential root causes and addressed them via refactorings
or annotations to the original code, ultimately changing 367 lines, with 1616 more updated by 3C.9

As shown in the second vsftpd row of the table, doing so increased the total count of checked
pointers and reduced the influence of the remaining root causes.

A common root causewas casts to/from void pointers, especiallywhen using łgenericž C functions
like malloc returning a void *. While the Checked C library headers use an itype to treat malloc’s

7https://github.com/secure-sw-dev/{checked-vsftpd,checkedc-icecast,checkedc-thttpd,checkedc-tiny-bignum-c}
8These counts, and others in the table, slightly differ from the counts in Table 4 because there we expanded macros first,

to show 3C’s full capabilities. Also note that the total number of pointers can change across rows in Table 8 because

pointer-containing code is added/deleted during a port.
9The latter count, for vsftpd and the other programs, includes vsftpd-internal header files that 3C automatically updated

with itypes just prior to the start of Phase 2, thereby supporting both checked and unchecked (i.e., not yet ported) clients.
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return as generic (e.g., see the recordptr prototype in Figure 1(c)), vsftpd wraps most standard
library functions to include defensive checks, and these wrappers lack the annotation. Some of
the simplest generic types are inferred automatically by 3C, but some must be added manually.
Other void pointers have more subtle constraints on how they can be instantiated which cannot
be expressed in Checked C. For instance, vsftpd uses void pointers for code that can operate
generically on either ipv4 or ipv6 addresses, which differ in size. Checked C generics only work
on pointed-to values (e.g., ∀𝑇 , array_ptr<𝑇>) not on values themselves, so we needed to resort to a
non-checked idiom. In these cases, however, it is still possible to ensure spatial memory safety, if
not type safety, by using the checked array_ptr<void> type. This type, when accompanied by an
appropriate bounds expression will protect against out-of-bounds memory accesses.

In Phase 2, we completed the port starting from the 3C-converted code and proceeding one file at
a time. The final vsftpd row of Table 8 shows that this took 1889 lines of mostly manual changes.
Most of this work involved adding missing bounds that 3C could not infer. For example, vsftpd
provides a string library that uses a struct to represent a dynamically resizable string. This struct
contains both the capacity and the current length of the string; 3C is not able to infer which is the
proper bound. We also sometimes needed to introduce pointers to act as the bounds in bounds(...)

annotations, and do other small refactorings.
At the end of the port, 97 unchecked pointers remained for which a Checked C idiom did

not apply; these were placed in unchecked blocks. In some cases, these blocks included calls to
potentially unsafe external library functions. Some calls could be made safe by defining an itype

for these functions, but for others no such itype is possible, e.g., to functions involving variable
length arguments. We also annotated blocks unchecked when they contained trusted casts. For
example, a bounds cast is required to expand the bounds on a string to be equal to the length of
the string determined by strlenÐthe Checked C compiler is not yet smart enough to figure this
out. Sometimes casts are needed to/from void * arguments, e.g., when implementing a kind of
existential type for functions passed fork or signal handlers. In all cases, we scrutinized these blocks
carefully to convince ourselves they were safe.

thttpd. thttpd required more pervasive phase-one changes than vsftpd because of its use
of risky string manipulation code. The two most prominent root causes were uses of the unsafe
string library functions strcpy and strcat, which affected 81 and 73 pointers respectively. Another
frequent root cause was the use of the & operator on strings with bounds, to be able to dynamically
resize them; unfortunately, this is an idiom that Checked C disallows (see the example at the end
of Section 2.1). We decided to refactor the string management code to something safer, taking
inspiration from vsftpd’s safe string library (see Figure 2(c)). Smaller fixes were made, too, including
adding itypes for standard library functions. During Phase 1 we changed 708 lines, reducing the
number of unchecked pointers from 198 to 58, with 771 additional changes introduced by 3C.
During Phase 2, our main task was to complete bounds annotations needed, and to make

further adjustments (or add unchecked blocks) to the refactored string manipulation code, which
often involved pointer arithmetic. Generally speaking, 3C and Checked C could stand to improve
their handling of such code. 3C fails to leverage manual string manipulation idioms; e.g., no
constraints are generated based on expressions comparing or assigning an index in the array to
null ((p + 1) == '\0'; or p[i] = '\0'). In cases where 3C correctly infers 𝑛𝑡𝑎𝑟𝑟 types, Checked C
is limited by the code patterns it can accept, often because information about a string’s length is
not apparent to it. As already mentioned, it does not relate calls of strlen to a string’s bound, and it
cannot express that functions such as strchr and strstr return a pointer that is an address within
the bounds of the parameter string. Planned compiler improvements will address some of these
issues [Li et al. 2022].
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An interesting aspect of converting thttpd is that the version we ported to Checked C contained
the known CVE-2003-0899 for a spatial safety violation. The extension of 3C (Section 6.4) that
can infer simple bounds(p,q)-style bounds annotations inferred a proper bound for the buffer
manipulated by the buggy code. As such, an overrun would have been prevented by a run-time
check. Even without this feature, a hand-added bound during Phase 2 would block exploitation.

icecast. icecast makes extensive use of third-party libraries, including libxml, libogg, and
libvorbis. Since Checked C does not provide itype-annotated header files for these libraries, the
initial run of 3C yielded a significant number of𝑤𝑖𝑙𝑑 pointers for uses of them (pointed out as root
causes). We used 3C to automatically construct itype annotations for these libraries’ headers by
copying the headers into a local directory in the include path, which allowed 3C to rewrite the files
with itypes based on its analysis of icecast’s use of them. The annotations to these headers are
included in the Phase 1 3C line count (5529), which is why it is larger than the other two programs.
Root cause analysis during Phase 1 also identified a generic AVL tree implementation as a pervasive
source of𝑤𝑖𝑙𝑑 pointers (e.g., more than 100 affected per root cause). We annotated the AVL tree’s
header avl.h with an itype-based interface matching the types we expected it should have, but
deferred porting the implementation avl.c until Phase 2. We did something similar for icecast’s
use of a generic struct to contain audio format-specific data in a plugin-style infrastructure.10

During Phase 2 we further ported code to added missing bounds annotations, and to use generic
features (e.g., on icecast’s thread wrapper library). Sometimes a struct’s generic-type use did not
admit a Checked C type, so we chose to write wrapper functions to mediate access to it. We likewise
needed to create wrappers or other exceptional cases for unsupported uses of generics on function
pointers and in macros. All of this led to large, but idiomatic, changes throughout icecast. We
are turning around our experience with icecast to the Checked C compiler teamÐbetter support
for generics would have led to a lot less manual work.

tiny-bignum. tiny-bignum-c11 is a small library for arbitrary-precision (łbignumž), unsigned
integer arithmetic, where a bignum is implemented as a struct with a single field having a fixed-
sized array of uints. The port to Checked C required only one run of 3C: 99% of its pointers were
converted and all of its required bounds were inferred. Just a few corrections were needed. The
porting process uncovered two spatial safety bugs. One was due to an off-by-one error: the code
for converting a bignum to a string failed to account for the space needed by the NULL terminator.
This problem was made evident when boun3c identified the intended bound of the function, but
then Checked C’s compiler rejected the callsites, which were passing buffers short one byte. The
other bug was due to an incorrect loop bound in this function, shown below, which was made
manifest by a failed run-time check.

void bignum_to_string(_Ptr<struct bn> n, _Array_ptr<char> str : count(nbytes), int nbytes) {

int i = 0;

// This condition ensures that we have space for another 2 characters.

while (... && (nbytes > (i + 1))) {

// Buffer overflow of str: SPRINTF_FORMAT_STR can write 8 bytes, 6 more than accounted for.

 sprintf(&str[i], SPRINTF_FORMAT_STR, ...);

i += (2 * WORD_SIZE); ...

} }

10Essentially, this is using void * to implement existential types.
11Available at https://github.com/kokke/tiny-bignum-c.
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7 RELATED WORK

Our work is related to past work aiming to automatically retrofit C code to be safe, and to work on
automated type migration, in the gradual typing literature.

Automated Analysis for Making C Safe. Several prior works statically analyze C programs with the
goal of ensuring memory safety. Many techniques use a simple compile-time analysis to instrument
programs with run-time checks, but these can add significant overhead [Duck and Yap 2016; Kendall
1983; Nagarakatte et al. 2009; Serebryany et al. 2012; Steffen 1992]. CCured [Necula et al. 2005]
aims to reduce overhead by adding bounds checks only where needed. Like typ3c, it employs a
whole-program static analysis to identify 𝑤𝑖𝑙𝑑 and safe pointer uses, distinguishing pointers to
arrays from pointers to single objects. But rather than output updated code, CCured compiles the
analyzed C program directly. During compilation, CCured’s𝑤𝑖𝑙𝑑 pointers point to extra metadata;
casts to/from wild pointers are therefore not allowed, resulting in an increase in wild pointers
compared to 3C (see Table 4). Array pointers in CCured are made łfatž with attached bounds
information set at allocation time; as such, their static analysis need not infer bounds information
at usage sites the way boun3c does. And since CCured is a compiler and not a source-to-source
translator, it need not be concerned with the reusability (and re-analyzability) of its output. A
follow-on to CCured called Deputy [Condit et al. 2007] includes Checked C-like bounds annotations
on function and struct definitions, but these must be added by hand; a CCured-style analysis within
a function (which introduces local fat pointer bounds) takes them into account [Zhou et al. 2006].
typ3c takes inspiration from algorithms for type qualifier inference, such as CQual [Foster et al.

2006]: the 𝑐ℎ𝑘 vs. 𝑤𝑖𝑙𝑑 distinction, and the 𝑝𝑡𝑟 , 𝑎𝑟𝑟 , and 𝑛𝑡𝑎𝑟𝑟 checked types can be viewed as
type qualifiers. typ3c’s kind constraints and solving algorithm are quite different from CQual’s,
due to wildness localization, and typ3c solves ptyp qualifier constraints using a novel algorithm
that improves generality. CQual was also unconcerned with actually rewriting programs, which
constrains some aspects of 3C; e.g., 3C cannot treat pointer types context sensitively because
Checked C does not.
Cascade [Vakilian et al. 2015] uses a qualifier checker in a guess-and-check fashion to infer

annotations, and speculates possible resolutions to łqualifier incompatibilities, which are caused by
mismatches in the actual and expected qualifiers of expressions,ž from which the user can select
one. typ3c’s notion of root cause is a specific kind of incompatibility, arising from a syntactic code
pattern that generates a direct𝑤𝑖𝑙𝑑→ 𝑞 constraint (where 𝑞 is a pointer qualifier); such an edge
arises due to an unsafe cast, invocation of a void* function, etc. Resolution of this problem will
require changing the inducing code, directly, and doing so may have a positive downstream effect,
which the root-cause analysis estimates. Cascade aims to handle qualifier incompatibilities from
a generic lattice for which there are many possible annotation-based solutions, so they require a
more involved (and more expensive) approach; its guess-and-check strategy is very unlikely to
scale. We could imagine future work to 3C that suggests changes and speculatively computes their
impact, as Cascade does; we believe the main technical challenge will be making this speculation
performant on large codebases.

Ruef et al. [2019] previously considered the problem of automatically converting a C program to
Checked C. Their toolÐcall it CCCÐis essentially a simpler version of typ3c; it lacks root-cause
analysis and boun3c’s bounds inference. CCC could distinguish 𝑝𝑡𝑟 types from array types, but did
not distinguish 𝑎𝑟𝑟 from 𝑛𝑡𝑎𝑟𝑟 , and did not actually rewrite array types (just left a comment). CCC
introduced the idea of using itypes or casts when callers/callees are not equally safe. 3C also utilizes
this idea, which we call localizing wildness (see Section 4.1). However, CCC ’s unification-based
inference algorithm, based loosely on CCured’s algorithm, turns out to be unsound, for two reasons.
First, it did not implement proper qualifier inference and as a result its implied notion of qualifier
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latticeÐ𝑞 ∈ {𝑝𝑡𝑟, 𝑎𝑟𝑟,𝑤𝑖𝑙𝑑} with 𝑝𝑡𝑟 ⊏ 𝑎𝑟𝑟 ⊏ 𝑤𝑖𝑙𝑑Ðworked to localize wildness for function
arguments but reversed the subtyping relationship that an 𝑎𝑟𝑟 can be used where a 𝑝𝑡𝑟 is expected.
As a result CCC could infer a result where a caller passed a 𝑝𝑡𝑟 to a function expecting an 𝑎𝑟𝑟 .
This problem is what led us to using paired qualifiers (𝑘, 𝑝) for typ3c, where 𝑘 ∈ {𝑐ℎ𝑘,𝑤𝑖𝑙𝑑} while
𝑝 ∈ {𝑛𝑡𝑎𝑟𝑟, 𝑎𝑟𝑟, 𝑝𝑡𝑟 } (Section 4.3). In addition, CCC ’s localization of wildness only worked for
function arguments/parameters, not returns, for which it was unsound. typ3c solves this problem
using reverse-flow edges for qualifiers 𝑘 , and paired in/out nodes.
We are aware of no prior work that infers an array’s bounds in terms of variables present in

the program, as boun3c does. Numeric static analysis, e.g., as part of classical abstract interpreta-
tion [Cousot and Cousot 1977], is a longstanding area with many recent advances [Gange et al.
2015; Redini et al. 2019; Rodrigues et al. 2013]. We found these techniques not to scale that well
(when used interprocedurally), and did not always infer bounds in terms of an expression over
in-scope variables. That said, they can conceivably support more interesting bounds, such as n+m+1
(not just n or 32). It may be that boun3c’s approach could be enhanced with these techniques.
Rodrigues et al. [2019] address the related problem of generating in-bounds inputs for arguments
to test functions using numeric static analysis techniques.
boun3c’s algorithm takes inspiration from correlation analysis. Locksmith [Pratikakis et al.

2011] introduced this kind of analysis to consistently correlate a pointer to potentially shared
memory with the mutex that guards it. Correlations in Locksmith are inferred at dereference sites
and propagated context sensitively. boun3c’s propagation phase is similar, but correlations are
seeded at allocation sites or are guessed from context, and propagation must ensure bounds-flow
respects variable scope, which Locksmith was not concerned with.

Automated Type Migration. A language with a gradual type system permits mixing statically and
dynamically typed codeÐstatic type annotations are added incrementally to increase confidence in
safety [Greenman and Felleisen 2018; Siek and Taha 2007; Tobin-Hochstadt et al. 2017]. Checked
C is similar in spirit: the base language (C) is unsafe, and safety-enhancing annotations can be
added incrementally. In this view, 3C and our process for using it address the problem of automated

type migration [Phipps-Costin et al. 2021], which is how to automatically infer (or improve) absent

static type annotations? typ3c’s use of unification and subtyping constraints mirrors that of prior
algorithms for automated type migration [Migeed and Palsberg 2020; Rastogi et al. 2012; Siek and
Vachharajani 2008]. However, prior work mostly considers the effect of a single migration, and
not the work that is left to complete a fuller port. We designed 3C to be used within an iterative,
human-in-the-loop process; e.g., localized wildness (Section 4.1) and root cause analysis (Section 4.2)
specifically aim to reduce human effort, as does the use of heuristic bounds inference (Section 5.4).

8 CONCLUSIONS AND FUTURE WORK

3C is a tool for providing automated assistance to a developer converting a C program to Checked C,
a C-language extension that adds new checked pointer types whose use can ensure spatial memory
safety. 3C’s typ3c algorithm converts legacy pointers to checked ones using a variant of static type
qualifier inference; typ3c’s novelty is in how constraints are generated and solved so to provide
more general, localized resultsÐincluding root causes of unsafetyÐto assist a developer using
3C to interactively refactor a codebase. 3C’s boun3c algorithm infers bounds annotations for
checked array pointers, using a novel analysis to correlate pointers with potential in-scope bounds
expressions. Experimental results on 11 programs totaling 319KLoC show 3C to be effective at
inferring checked pointer types; able to infer bounds annotations for roughly 3/4 checked array
pointers; and supportive of an iterative workflow, able to complete much of the required annotation
work of a full port to Checked C.
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