
Cyber Grand Shellphish

DEFCON 24
August 7, 2016 · Track 2 - 3pm

Giovanni Vigna Christopher Kruegel

zanardi void

HEX on the beach

UC Santa Barbara

zanardinullptr
voidbalzaroth

sicko irish

SIMULATION
2004

UC Santa Barbara

nullptr zanardi
voidbalzaroth

sicko irish

TU Vienna
void

engiman

pizzaman

SIMULATION
2005

virus weaver
marco

beetal

Northeastern and boston university

UC Santa Barbara

zanardi
balzaroth

sicko irish

TU Vienna
void

nullptr

engiman

pizzaman

odo

adamd

giullo voltaire

bboe

virus weaver
marco

beetalvoid
pizzaman gianluca

zardus
cavedon spermachine

kirat

hacopo

reyammer

anton00b

mw

engiman
nullptr

SIMULATION
2006 - 2011

collin

Northeastern and boston university

UC Santa Barbara

zanardi
balzaroth

sicko irish
virus weaver

marco
beetalvoid

odo

adamd

giullo voltaire

bboepizzaman gianluca

zardus
cavedon spermachine

kirat

hacopo

reyammer

anton00b

engiman
nullptr mw

collin pizzaman

acez

fish

cao

salls
subwire

mossberg
crowell

nezorgrhelmot

jay

vitor

SIMULATION
2011 - 2014

mw

collin

EurecomASU

UC London

Northeastern and boston university

UC Santa Barbara

zanardi
sicko irish

virus weaver
marco

beetal

mossberg
crowell

nezorgrhelmot

jay

vitor

void

odo giullo voltaire

bboe
balzaroth

adamd

gianluca

zardus
cavedon spermachine

kirat

hacopo

reyammer

anton00b

engiman
nullptr mw

collin pizzaman

acez

fish

cao

salls
subwire

mike_pizza

donfos
double

acez

balzarothadamd

gianluca
SIMULATION

2015

EurecomASU

UC London

Northeastern and boston university

UC Santa Barbara

zanardi

mossberg
crowell

nezorgrhelmot

jay

void

odo
zardus

cavedon spermachine
kirat

hacopo

reyammer

anton00b

engiman
nullptr mw

irish weaver
giullo voltaire

virussicko
marco

beetal

vitor
bboe

collin pizzaman

fish

cao

salls
subwire

mike_pizza

donfos
double

acez

balzarothadamd

gianluca
SIMULATION

Modern day

EurecomASU

UC London

Northeastern and boston university

UC Santa Barbara

zanardi

mossberg
crowell

nezorgrhelmot

jay

void

odo
zardus

cavedon

hacopo

reyammer

anton00b

engiman
nullptr mw

pizzaman

fish

cao

salls
subwire

mike_pizza

donfos

acez

balzarothadamd

gianluca
SIMULATION

Modern day

DARPA Competitions
Self-driving Cars Robots

The DARPA Cyber Grand Challenge
Programs!

2015 20162014

Regis
tra

tio
n D

ead
lin

e

Sh
ellp

hish
 si

gn
s u

p!
2013

1st
co

m
m

it
to

 th
e C

RS!

2nd co
m

m
it

to
 th

e C
RS!

CGC Q
uals

!

3 w
eeks

 o
f i

nsa
nity

CGC Fi
nals

!

3 m
onth

s o
f i

nsa
nity

“C
ode fr

eeze
”

Fin
al

co
m

m
it

to
 th

e C
RS!

Sc
ore

d eve
nt 1

Sc
ore

d eve
nt 2

analyze

pwn

patch

20

analyze

pwn

patch

21

- Linux-inspired environment, with only 7 syscalls
■ transmit / receive / fdwait (≈ select)
■ allocate / deallocate
■ random
■ terminate

- No need to model the POSIX API!

- Otherwise real(istic) programs.

22

analyze

pwn

patch

23

- No filesystem -> no flag?

- CGC Quals: crash == exploit

- CGC Finals: two types of exploits

1. "flag overwrite": set a register to X, crash at Y

2. "flag read": leak the "secret flag" from memory

24

analyze

pwn

patch

25

int main() { return 0; }

fails functionality checks...

signal(SIGSEGV, exit)

inline QEMU-based CFI?

performance penalties...

no signal handling!

26

A completely autonomous system
• Patch
• Crash

Mechanical Phish (CQE)

Completely autonomous system
• Patch
• Crash
• Exploit

Mechanical Phish (CFE)

The DARPA Cyber Grand Challenge

The CGC Final Event (CFE)
• The competition is divided in rounds (96), with short

breaks between rounds
• The competition begins: The system provides a set of

Challenge Binaries (CBs) to the teams’ CRSs
– Each CB provides a service (e.g., an HTTP server)
– Initially, all teams are running the same binaries to implement

each service
• For each round, a score for each (team, service) tuple is

generated

The CGC Final Event (CFE)

• Availability: how badly did you fuck up the binary?
• Security: did you defend against all exploits?
• Evaluation: how many n00bs did you pwn?

• When you are shooting blindfolded automatic
weapons, it’s easy to shoot yourself in the foot…

Code Freeze?

oops!

Tue 2 Aug, 23:54
~15 hours before access shutdown

Farnsworth

Meister

TI API IDS tap

Ambassador

Scriba

Network
Dude

Poll Creator

Tester

Patcherex

AFL Driller

Colorguard

Rex POV Fuzzer

POV Tester

Worker

Farnsworth
Object-relational model for database:
- What CS are fielded this round?
- Do we have crashes?
- Do we have a good patch?
- ...

Our ground truth and the only
component reasonably well tested*

* 69% coverage

Meister
Job scheduler:
• Looks at game state
• Asks creators for jobs
• Schedules them based on priority

On the Shoulders of Giants

AFLangr

Unicorn
Engine

Capstone
EngineVEX

angr
• Framework for the analysis of binaries, developed at

UCSB
• Supports a number of architectures

– x86, MIPS, ARM, PPC, etc. (all 32 and 64 bit)
• Open-source, free for commercial use (!)

– http://angr.io
– https://github.com/angr
– angr@lists.cs.ucsb.edu

angr

angr

Concolic
Execution

Automatic
Exploitation

Patching

Fuzzing
• Fuzzing is an automated procedure to send inputs and

record safety condition violations as crashes
– Assumption: crashes are potentially exploitable

• Several dimensions in the fuzzing space
– How to supply inputs to the program under test?
– How to generate inputs?
– How to generate more “relevant” crashes?
– How to change inputs between runs?

• Goal: maximized effectiveness of the process

Gray/White-box Fuzzing

Input
Generator

Application
Under Analysis

Crash
Crash

Database

Bugs (0-day)

Fuzzing
Infrastructure

Feedback

How do we find crashes?

Fuzzing

Symbolic
Execution

"Uncrasher"

Network
Traffic

Fuzzing: American Fuzzy Lop

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

Let's fuzz it!

1 ⇒ "You lose!"

593 ⇒ "You lose!"

183 ⇒ "You lose!"

4 ⇒ "You lose!"

498 ⇒ "You lose!"

42 ⇒ "You win!"

x = int(input())
if x >= 10:

if x^2 == 152399025:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

Let's fuzz it!

1 ⇒ "You lose!"
593 ⇒ "You lose!"
183 ⇒ "You lose!"
4 ⇒ "You lose!"
498 ⇒ "You lose!"
42 ⇒ "You lose!"
3 ⇒ "You lose!"

……….
57 ⇒ "You lose!"

- Very fast!

- Very effective!

- Unable to deal with certain situations:
- magic numbers
- hashes
- specific identifiers

x = input()
if x >= 10:

if x % 1337 == 0:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

???

x < 10 x >= 10

x >= 10
x % 1337 != 0

x >= 10
x % 1337 == 0

x = input()
if x >= 10:

if x % 1337 == 0:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

???

x < 10 x >= 10

x >= 10
x % 1337 != 0

x >= 10
x % 1337 == 0

1337

Driller = AFL + angr

Fuzzing

good at finding
solutions for general

inputs

Symbolic
Execution

good at find solutions
for specific inputs

Driller
Test Cases

Driller

“Cheap” fuzzing coverage

Test Cases

“Y”

“X”

Driller

“Cheap” fuzzing coverage

Test Cases

“Y”

“X”

Dynamic Symbolic
Execution

!

Driller

“Cheap” fuzzing coverage

Test Cases

“Y”

“X”

Dynamic Symbolic
Execution

“CGC_MAGIC”

New test cases generated

Driller

“Cheap” fuzzing coverage

Test Cases

“Y”

“X”

Dynamic Symbolic
Execution

“CGC_MAGIC”

New test cases generated “CGC_MAGICY”

Auto Exploitation - Simplified
typedef struct component {

char name[32];
int (*do_something)(int arg);

} comp_t;

comp_t *initialize_component(char *cmp_name) {
int i = 0;
struct component *cmp;

cmp = malloc(sizeof(struct component));
cmp->do_something = sample_func;

while (*cmp_name)
cmp->name[i++] = *cmp_name++;

cmp->name[i] = ‘\0’;
return cmp;

}
x = get_input();
cmp = initialize_component(x);
cmp->do_something(1);

HEAP
char name[32];

int (*do_something)(int arg)

Symbolic Byte[0]
‘\0’

&sample_func

Symbolic Byte[0]
Symbolic Byte[1]
‘\0’

Symbolic Byte[0]
Symbolic Byte[1]
Symbolic Byte[2]
‘\0’

Symbolic Byte[0]
Symbolic Byte[1]
Symbolic Byte[2]
Symbolic Byte[3]
Symbolic Byte[4]
Symbolic Byte[5]
Symbolic Byte[6]
Symbolic Byte[7]
...

Symbolic Byte[32] …
Symbolic Byte[36]

‘\0’

call <symbolic
byte[36:32]>

Auto Exploitation - Simplified
Turning the state into an exploited state

angr

assert state.se.symbolic(state.regs.pc)

Constrain buffer to contain our shellcode

angr

buf_addr = find_symbolic_buffer(state, len(shellcode))
mem = state.memory.load(buf_addr, len(shellcode))
state.add_constraints(mem == state.se.bvv(shellcode))

Auto Exploitation - Simplified
Constrain PC to point to the buffer

angr

state.se.add_constraints(state.regs.pc == buf_addr)

Synthesize!

angr

exploit = state.posix.dumps(0)

Vulnerable Symbolic State (PC hijack)

Auto Exploitation - Simplified

+ Constraints to make PC point to shellcode

Exploit

Constraints to add shellcode to the address space

Detecting Leaks of the Flag Page
• Make only the flag page symbolic

• Everything else is completely concrete
– Can execute most basic block with the Unicorn Engine!

• When we have idle cores on the CRS, trace all our
testcases

• Solved DEFCON CTF LEGIT_00009 challenge

Patcherex
Unpatched Binary

Patching Backend

Patched Binary

Patching Techniques

Patches

Patching Techniques:
- Stack randomization
- Return pointer encryption
- ...

Patches:
- Insert code
- Insert data
- ...

Patching Backend:
- Detour
- Reassembler
- Reassembler Optimized

Adversarial Patches 1/2
Detect QEMU

xor eax, eax
inc eax
push eax
push eax
push eax
fld TBYTE PTR [esp]
fsqrt

Adversarial Patches 2/2
Transmit the flag

- To stderr!

Backdoor

- hash-based challenge-response backdoor
- not “cryptographically secure” → good enough to defeat automatic systems

Generic Patches
Return pointer encryption

Protect indirect calls/jmps

Extended Malloc allocations

Randomly shift the stack (ASLR)

Clean uninitialized stack space

Targeted Patches

Qualification event → avoid crashes!

Targeted Patches

Final event →

Reassembler & Optimizer

- Prototypes in 3 days

angr is awesome!!

- A big bag of tricks integrated, which worked out

CGC CFE Statistics 1/3
- 82 Challenge Sets fielded
- 2442 Exploits generated
- 1709 Exploits for 14/82 CS with 100% Reliability
- Longest exploit: 3791 lines of C code
- Shortest exploit: 226 lines of C code
- crackaddr: 517 lines of C code

100% reliable exploits generated for:
• YAN01_000{15,16}
• CROMU_000{46,51,55,65,94,98}
• NRFIN_000{52,59,63}
• KPRCA_00{065,094,112}

Rematch Challenges:
- SQLSlammer (CROMU_00094)
- crackaddr (CROMU_00098)

CGC CFE Statistics 2/3

Vulnerabilities in CS we exploited:
• CWE-20 Improper Input Validation
• CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer
• CWE-121: Stack-based Buffer Overflow
• CWE-122: Heap-based Buffer Overflow
• CWE-126: Buffer Over-read
• CWE-131: Incorrect Calculation of Buffer Size
• CWE-190: Integer Overflow or Wraparound
• CWE-193 Off-by-one Error
• CWE-201: Information Exposure Through Sent Data
• CWE-202: Exposure of Sensitive Data Through Data Queries)
• CWE-291: Information Exposure Through Sent Data
• CWE-681: Incorrect Conversion between Numeric Types
• CWE-787: Out-of-bounds Write
• CWE-788: Access of Memory Location After End of Buffer

CGC CFE Statistics 3/3

Human augmentation...

Awesome:

- CRS assisted with 5
exploits

- Human exploration
-> CRS exploitation

- Backdoors!

Tough:

- API incompatibilities
are brutal

- Computer programs
are brittle

Open source all the code!

@shellphish

Stay in touch!
twitter: @Shellphish
email: team@shellphish.net or cgc@shellphish.net
irc: #shellphish on freenode

CRS chat: #shellphish-crs on freenode
angr chat: #angr on freenode

mailto:team@shellphish.net
mailto:cgc@shellphish.net

Backup

Conclusions
• Automated vulnerability analysis and mitigation is a

growing field
• The DARPA CGC Competition is pushing the limits of

what can be done in a self-managed, autonomous
setting

• This is a first of this kind, but not the last
• … to the singularity!

Self-Managing Hacking
• Infrastructure availability

– (Almost) No event can cause a catastrophic downtime
• Novel approaches to orchestration for resilience

• Analysis scalability
– Being able to direct efficiently (and autonomously) fuzzing and state

exploration is key
• Novel techniques for state exploration triaging

• Performance/security trade-off
– Many patched binaries, many approaches: which patched binary to

field?
• Smart approaches to security performance evaluation

Hacking Binary Code
• Low abstraction level
• No structured types
• No modules or clearly defined functions
• Compiler optimization and other artifacts can make the

code more complex to analyze
• WYSIWYE: What you see is what you execute

Finding Vulnerabilities

Human Semi-Automated Fully Automated

Manual Vulnerability Analysis
• “Look at the code and see what you can find”
• Requires substantial expertise

– The analysis is as good as the person performing it
• Allows for the identification of complex vulnerabilities

(e.g., logic-based)
• Expensive, does not scale

Tool-Assisted Vulnerability
Analysis

• “Run these tools and verify/expand the results”
• Tools help in identifying areas of interest

– By ruling out known code
– By identifying potential vulnerabilities

• Since a human is involved, expertise and scale are still
issues

Automated Vulnerability Analysis
• “Run this tool and it will find the vulnerability”

– … and possibly generate an exploit...
– ...and possibly generate a patch

• Requires well-defined models for the vulnerabilities
• Can only detect the vulnerabilities that are modeled
• Can scale (not always!)
• The problem with halting…

Vulnerability Analysis Systems
• Usually a composition of static and dynamic techniques
• Model how attacker-controlled information enter the

system
• Model how information is processed
• Model a number of unsafe conditions

Static Analysis
• The goal of static analysis techniques is to characterize

all possible run-time behaviors over all possible inputs
without actually running the program

• Find possible bugs, or prove the absence of certain
kinds of vulnerabilities

• Static analysis has been around for a long while
– Type checkers, compilers
– Formal verification

• Challenges: soundness, precision, and scalability

Example Analyses
• Control-flow analysis: Finds and reasons about all possible

control-flow transfers (sources and destinations)
• Data-flow analysis: Reasons about how data flows within the

program
• Data dependency analysis: Reasons about how data influences

other data
• Points-to analysis: Reasons about what values can pointers take
• Alias analysis: Determines if two pointers might point to the same

address
• Value-set analysis: Reasons about what are the set of values that

variables can hold

Dynamic Analysis
• Dynamic approaches are very precise for particular

environments and inputs
– Existential proofs

• However, they provide no guarantee of coverage
– Limited power

Example Analyses
• Dynamic taint analysis: Keeps track of how data flows

from sources (files, network connections) to sinks
(buffers, output operations, database queries)

• Fuzzing: Provides (semi)random inputs to the program,
looking for crashes

• Forward symbolic execution: Models values in an
abstract way and keeps track of constraints

The Shellphish CRS: Mechanical Phish

vulnerable
binary

proposed
patches

crashes

Automatic
Testing

exploit

patched
binary

Automatic
Vulnerability

Finding

Automatic
Vulnerability
Patching

Automatic
Exploitation

proposed
exploits

Interactive, Online CTFs
• Very difficult to organize
• Require substantial infrastructure
• Difficult to scale
• Focused on both attacking and defending in real time
• From ctftime.org: 100+ events listed
• Online attack-defense competitions:

– UCSB iCTF 13 editions
– RuCTF 5 editions
– FAUST 1 edition

CTFs Are Playgrounds…
• For people (hackers)
• For tools (attack, defense)
• But can they be used to advance science?

DECREE API
• void _terminate(unsigned int status);
• int allocate(size_t length, int prot, void **addr);
• int deallocate(void *addr, size_t length);
• int fdwait(int nfds, fd_set *readfds, fd_set *writefds,

struct timeval *timeout, int *readyfds);
• int random(void *buf, size_t count, size_t *rnd_bytes);
• int receive(int fd, void *buf, size_t count,

size_t *rx_bytes);
• int transmit(int fd, const void *buf, size_t count,

size_t *tx_bytes);

P

Actual run-time
behaviors

Soundness and Completeness

P

Actual run-time
behaviors

Soundness and Completeness

Over-approximation
(sound)

P

Actual run-time
behaviors

Soundness and Completeness
More precise over-approximation (sound)

P

Actual run-time
behaviors

Soundness and Completeness

Under-approximation
(complete)

P

Actual run-time
behaviors

Soundness and Completeness

Unsound, incomplete
analysis

Hidden

Changed with "All the things" meme

Open the source!

Human + Machine = WIN!
OMG,

can’t do stairs?!?

Simulation For Team Shellphish
• R00: Competition fields CB1, CB2, CB3
• R01: CRS generates PoV1, RB2

– Points for round 00:
• (CB1, CB2, CB3): Availability=1, Security=2, Evaluation=1 → Score = 2
• Total score: 6

• R02: Competition fields CB1, RB2, CB3
– Points for round 01

• CB1: Availability=1, Security=1, Evaluation= 1+(6/6) →Score = 2
• RB2: 0
• CB3: Availability=1, Security=2, Evaluation=1 → Score = 2
• Total score: 4

Simulation For Team Shellphish
• R03: Competition fields CB1, RB2, CB3

– Points for round 02
• CB1: Availability=1, Security=1, Evaluation=1+(3/6) → Score = 1.5
• RB2: Availability=0.8, Security=2, Evaluation=1 → Score = 1.6
• CB3: Availability=1, Security=2, Evaluation=1 → Score = 2
• Total score: 5.1

