CLAPP: Characterizing Loops in Android Applications
(Invited Talk)

Yanick Fratantonio
UC Santa Barbara, USA
yanick@cs.ucsb.edu

Christopher Kruegel
UC Santa Barbara, USA
chris@cs.ucsb.edu

ABSTRACT

When performing program analysis, loops are one of the
most important aspects that needs to be taken into account.
In the past, many approaches have been proposed to analyze
loops to perform different tasks, ranging from compiler opti-
mizations to Worst-Case Execution Time (WCET) analysis.
While these approaches are powerful, they focus on tackling
very specific categories of loops and known loop patterns,
such as the ones for which the number of iterations can be
statically determined.

In this work, we developed a static analysis framework
to characterize and analyze generic loops, without relying
on techniques based on pattern matching. For this work,
we focus on the Android platform, and we implemented a
prototype, called CLAPP, that we used to perform the first
large-scale empirical study of the usage of loops in Android
applications. In particular, we used our tool to analyze a to-
tal of 4,110,510 loops found in 11,823 Android applications,
and we gained several insights related to the performance
issues and security aspects associated with loops.

Categories and Subject Descriptors

D.4.6 [Software Engineering]: Security and Protection

Keywords
Android, Static Analysis, Loop Analysis

INTRODUCTION

Over the past few decades, there has been an explosion in
the development and application of program analysis tech-
niques to achieve a variety of goals. Program analysis has
been used for compilation and optimization purposes, for
studying a variety of program properties, for detecting bugs,
vulnerabilities, malicious functionality, and, ultimately, for
understanding program behavior. When performing pro-
gram analysis, one of the most important aspects that needs

1.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
DeMobile’15, August 31, 2015, Bergamo, Italy

ACM. 978-1-4503-3815-8/15/08
http://dx.doi.org/10.1145/2804345.2804355

Aravind Machiry
UC Santa Barbara, USA
machiry@cs.ucsb.edu

33

Antonio Bianchi
UC Santa Barbara, USA
antoniob@cs.ucsb.edu

Giovanni Vigna
UC Santa Barbara, USA
vigna@cs.ucsb.edu

to be taken into account are loops, which are undoubtedly
one of the most useful and essential constructs when writing
programs. However, they are also one of the most challeng-
ing ones to handle: In fact, even answering the simplest
questions (e.g., “Is a given loop going to terminate?”) is, in
the general case, an undecidable problem.

When applying program analysis, loops also have partic-
ular importance for optimization or security purposes: the
execution of a performance-intensive operation (e.g., a GUI-
related operation) or of a security-relevant operation (e.g.,
file deletion) might not constitute a problem when executed
only occasionally, but it could be deemed as problematic
when executed multiple times within a loop. In the past,
much research has been focused on the analysis of loops,
mainly to perform Worst-Case Execution Time (WCET)
analysis [2], which aims to statically determine how many
times a loop can be executed in the worst possible case, and
to perform loop unrolling [1], which aims to unwind loops’
execution to gain a performance boost. While these ap-
proaches are powerful, they rely on pattern matching or fo-
cus on handling only very specific types of loops.

In this work!, we developed a novel loop analysis frame-
work (based on static analysis) to characterize loops un-
der many different aspects, such as how they are controlled,
which operations they perform, and their impact under both
the performance and security aspects. In particular, we fo-
cused on the analysis of Android applications, and we devel-
oped a tool, called CLAPP, which works directly on Dalvik
bytecode, and it therefore does not rely on having access
to the application’s source code. The key advantage of our
approach is that it is completely generic and can be applied
to any kind of program. Moreover, our approach does not
rely on the identification of known cases through techniques
based on pattern matching.

We used CLAPP to perform the first large-scale empiri-
cal study on 4,110,510 loops contained in 11,823 distinct
Android applications. The results allowed us to study the
different use cases for writing loops in Android applications,
and, more in general, to characterize the usage of loops un-
der two main perspectives, performance and security.

2. LOOP ANALYSIS FRAMEWORK

Our loop analysis framework is constituted by several anal-
ysis steps. First, the analyzer unpacks the given Android

!The full version of this paper has been published in FSE
2015 [3].



application, and it parses the Dalvik bytecode into a cus-
tom intermediate representation (in SSA form) suitable for
performing static analysis. As a second step, the analyzer
identifies all loops defined in the application, and it then
performs the analyses at the core of our approach, control
analysis and body analysis.

Control Analysis. This analysis aims to determine whether
the number of loop’s iterations is bounded, and, more in
general, to characterize the factors that control it. This is
achieved by first identifying all exit paths and exit condi-
tions. Then, for each register involved in each condition,
the analyzer constructs an expression tree that encodes the
operations that initialize the register’s value before the first
iteration of the loop, and that update it during each itera-
tion. Then, the analysis performs selective abstract inter-
pretation to determine what is the trend of each register’s
value, attempting to answer questions such as “Is the value
constant?” and “Is the value going to eventually increase?”.
As we discuss in the full version of this paper [3], the an-
swers to these questions proved to be of key importance to
answer termination-related questions, and to characterize
which kind of external factors can influence the number of
iterations of a given loop.

Body Analysis. This analysis aims to characterize the op-
erations executed for each loop’s iterations. For each loop,
the analysis computes the set of framework APIs that could
be potentially invoked within the loop’s body. This is done
by first computing an over-approximation of the callgraph,
and by then performing reachability analysis. This set of
methods characterizes the intent of a given loop, and it al-
lows us to perform subsequent powerful analyses, such as
the identification of problematic loops.

3. EVALUATION

This section discusses the large-scale empirical study we
performed, the results we obtained, and the insights we
gained.

Dataset. Our dataset is constituted by 15,240 applications
selected, at random, from the ones collected by the Play-
Drone project [4].

Overall Results. Among the 15,240 applications selected
for the experiments, our prototype was able to successfully
analyze 11,823 (77.57%) of them. The analysis of the re-
maining 3,417 applications did not terminate before the time-
out (30 minutes per app). For the applications that were
successfully processed, our tool analyzed a cumulative to-
tal of 4,110,510 loops, and identified a total of 118,190,014
API framework methods that could potentially be invoked
in these loops. On average, analyzing each application takes
96.77 seconds, and analyzing each loop takes 50.86 seconds.

Control Analysis Results. We now report the results re-
lated to the control aspect of loops. Our analysis identified
3,196,119 (77.70%) simple loops (i.e., loops with only one
exit path with one condition) and 910,841 (22.22%) complex
loops (i.e., loops with one or more exit paths with several
exit conditions). For the 3,550 (0.08%) remaining loops, our
analysis determined that there were no explicit exit paths,
which might indicate the presence of infinite loops. As an-
other interesting statistic, we found that 266,667 (6.48%) of
the loops contain at least one nested loop. Our analysis also

34

determined that 2,601,240 (63.28%) of the loops are guar-
anteed to terminate, and that all the exit paths associated
to 6,256 loops do not seem to be satisfiable, thus once again
indicating the presence of potentially-infinite loops. Our
analysis also classified 24,842 (0.60%) loops as risky, with
which we refer to loops that, independently from whether
they terminate or not, a subtle change in their body might
cause them to become infinite. As a clarifying example, con-
sider the loop “for (i=0; i !'= 12; i+=3){...}”": thisloop
will iterate exactly four times. However, a modification to
how the variable i is updated could suddenly introduce an
infinite loop.

Body Analysis Results. The results of the body analysis
show that, in most cases, developers make use of loops to in-
voke low-risk APIs. For example, they use loops to perform
simple iterations over app-specific objects, perform cryp-
tographic operations, generating random numbers, parsing
data, and iterating over different data structures. How-
ever, our analysis also identified 1,057,628 loops that could
potentially invoke network-related API functions, 764,240
of which could be executed by the app’s main Ul thread.
The Android official documentation clearly states that no
potentially-blocking operations should be ever performed
within the main UI thread, since, in certain scenarios, the
app might be terminated with the infamous Application Not
Responding (ANR) error message. This aspect is so prob-
lematic that a recent version of Android introduced Strict-
Mode, which is, quoting the official documentation, a tool to
“catch accidental disk or network access on the application’s
main thread.” However, this mechanism can be explicitly
disabled by an Android application, and, interestingly, we
found 207,888 loops that potentially do so. We invite the
interested reader to consult the detailed results reported in
the full version of this paper [3].

4. CONCLUSIONS

We presented CLAPP, a tool that implements a general
loop analysis framework (based on static analysis) to study
a variety of aspects related to the usage of loops in Android
applications. We used CLAPP to perform the first large-
scale empirical study on 4,110,510 loops contained in 11,823
Android apps, and we gained several insights related to their
control, body, performance, and security aspects.

5. REFERENCES

[1] D. Berlin, D. Edelsohn, and S. Pop. High-level Loop
Optimizations for GCC. In Proceedings of the GCC
Developers Summit, 2004.

A. Ermedahl, C. Sandberg, J. Gustafsson, S. Bygde,
and B. Lisper. Loop Bound Analysis based on a
Combination of Program Slicing, Abstract
Interpretation, and Invariant Analysis. In Workshop on
Worst-Case Ezecution Time Analysis (WCET), 2007.
Y. Fratantonio, A. Machiry, A. Bianchi, C. Kruegel,
and G. Vigna. CLAPP: Characterizing Loops in
Android Applications. In Proceedings of the ACM
Symposium on the Foundations of Software Engineering
(FSE), 2015.

N. Viennot, E. Garcia, and J. Nieh. A Measurement
Study of Google Play. In ACM International
Conference on Measurement and Modeling of Computer
Systems (SIGMETRIC), 2014.

2l

3]

(4]



