
Towards Rehosting Embedded Applications as
Linux Applications

Jayashree Srinivasan, Sai Ritvik Tanksalkar, Paschal C. Amusuo, James C. Davis, Aravind Machiry
Purdue University, USA

{srinivaj, stanksal, pamusuo, davisjam, amachiry}@purdue.edu

Abstract—Dynamic analysis of embedded firmware is a nec-
essary capability for many security tasks, e.g., vulnerability
detection. Rehosting is a technique that enables dynamic analysis
by facilitating the execution of firmware in a host environment
decoupled from the actual hardware. Current rehosting tech-
niques focus on high-fidelity execution of the entire firmware.
Consequently, these techniques try to execute firmware in an
emulated environment, with precise models of hardware (i.e.,
peripheral) interactions. However, these techniques are hard to
scale and have various drawbacks.

We propose a novel take on rehosting by focusing on the
application components and their interactions with the firmware
without the need to model hardware dependencies. We achieve
this by rehosting the embedded application as a Linux ap-
plication. In addition to avoiding precise peripheral modeling,
our rehosting technique enables the use of existing dynamic
analysis techniques on these embedded applications. We provide
an overview of our approach and demonstrate its feasibility
on three real-world embedded applications. Our testing of these
rehosted applications found 2 previously unknown defects in
driver components. We discuss challenges in automating our
process and present possible future research directions.

Index Terms—Embedded Systems, Cybersecurity, Firmware,
Rehosting, Real-time Systems, RTOS, Dynamic Analysis

I. INTRODUCTION

Embedded systems are widely used in safety-critical ap-
plications, such as medical devices [1], surveillance [2], and
automotive systems [3]. These systems must be validated to
ensure they deliver functionality without defects or cybersecu-
rity vulnerabilities [4]–[6]. These systems’ asynchronous and
event-driven nature [7] makes it hard to apply static vulnerabil-
ity detection techniques [8]. Researchers have resorted to per-
forming dynamic analysis [9]. However, performing scalable
and effective dynamic analysis has various issues [8]: need for
hardware, challenges in instrumentation, input generation, and
crash detection [10]. Rehosting [11] is a well-known technique
to handle this. The main principle is to decouple the firmware
from the hardware and execute it in an emulated environment.

Most existing techniques take a firmware targeted for a
specific Microcontroller Unit (MCU) and faithfully execute it
in an emulator. They model peripheral behavior using various
techniques, such as manually created models [12], pattern-
based model generation [13], or models built using machine
learning techniques [14], [15]. They depend on the availabil-
ity of an MCU-specific Instruction Set Architecture (ISA)
emulator and require considerable engineering effort [16] to

The authors gratefully acknowledge support from Rolls Royce.

configure different peripherals. They focus on having a high-
fidelity execution, i.e., the execution of rehosted system is
expected to behave nearly the same as on the corresponding
hardware. Additionally, many MCUs lack supported emu-
lators [11]. Providing emulation support to all MCUs can
therefore become challenging.1

We observe that many problems in testing embedded sys-
tems have solutions for regular applications, but that these so-
lutions do not apply well to embedded systems. For example,
several sanitizers can detect non-crash bugs but cannot be uti-
lized in embedded systems due to the lack of required memory
protections [19]. Automated input generation techniques [20],
which are available for regular applications, cannot be applied
to embedded systems because of their unique input channels.
Additionally, some dynamic analysis methods such as Intel’s
PIN rely on hardware features [21], [22], and cannot be
directly applied to embedded systems that lack such features.

From a cybersecurity standpoint, we argue it is better to find
vulnerabilities than to delay discovery in the pursuit of perfect
emulation. We, therefore, propose to rehost embedded systems
as Linux applications. This will enable us to apply state-of-
the-art techniques to embedded systems software. Given an
embedded application, our goal is to obtain a semantically
equivalent Linux executable to which inputs can be provided.
There are three challenges: (1) Retargeting to different ISAs:
Embedded applications have several MCU specific compo-
nents that cannot be directly compiled for traditional ISAs
because of differences in compiler toolchains and the presence
of inline ISA-specific assembly code. We should have a
mechanism to compile an embedded application for common
desktop ISAs. (2) Preserving Execution Semantics: Linux
applications, by default, follow single-threaded execution.
However, embedded applications are engineered in terms of
event-driven tasks and are multi-threaded [7]. Our rehosted
Linux application should have the same execution semantics as
the original embedded system, i.e., task-based and event-driven
execution. (3) Handling Peripheral Interactions: Embedded
systems interact with the external world through peripheral
interfaces. Peripherals are physically attached to sensors and
actuators and are accessed through a special set of Memory
Mapped I/O (MMIO) addresses [23]. These addresses need to

1We anticipate the use of general-purpose processing units to rise, especially
in applications that incorporate Artificial Intelligence. However, MCUs will
remain widespread. Many embedded applications require minimal computing
capabilities but possess critical time constraints [17], [18].



be distinguished from regular memory accesses and handled
sensibly, which is usually termed peripheral modeling.

In this paper, we present the first practical approach to
rehost an embedded system as a Linux application. Further,
we demonstrate its feasibility on three real-world embedded
applications. We compiled these rehosted applications using
sanitizers and tested them using AFL++ [24], a well-known
application testing tool. We found two previously unknown
bugs, indicating the effectiveness of our approach. We also
provide insights into automating the retargeting and peripheral
handling process, challenges, and potential solutions.

II. BACKGROUND AND THREAT MODEL

Embedded systems perform a designated task with custom-
designed software and hardware. Following previous system-
atization works [10], [11], these systems can be categorized
into three types: Type-1 systems use general purpose Operating
System (OS) retrofitted for embedded systems, e.g., Embedded
Linux; Type-2 systems use a Real Time Operating System
(RTOS); and Type-3 systems use no OS abstractions. In this
work, we focus on Type-2 systems. As shown in Figure 1, they
have a layered design [25]. Application logic is implemented
in tasks managed by an RTOS. Most RTOSes modularize their
code base to capture all the hardware-specific functionalities
within a portability layer specialized for each supported MCU.

These systems use peripherals to function and interact with
the external world. The interaction with these peripherals is
done through Memory Mapped I/O (MMIO), i.e., by reading
from/writing to a dedicated memory region. From a functional-
ity perspective, peripherals can be classified into: (i) Essential:
These are necessary for the execution of the system, like
the ones pertaining to the clock module or power source.
Most existing rehosting works [12]–[15] focus on modeling
accesses to essential peripherals. (ii) Non-essential: These
are not necessary for execution but provide interfaces to the
external world, e.g., temperature sensor connected via a GPIO.

These systems execute in an event-driven way [26]. Periph-
erals trigger interrupts that switch execution from a currently
executing task to a service routine.

Threat Model: We assume that non-essential peripherals can
receive data from malicious sources. In the case of essential
peripherals, they can be malformed and provide values not
expected by the application code. Furthermore, we assume that
these peripherals are only connected via the system under test
and do not have out-of-system interactions with each other.

In embedded systems, the data from external entities (e.g.,
network packets) is received through non-essential peripherals,
creating a possibility of memory exploits [27]. Additionally,
in the case of essential peripherals (e.g., clock), any deviation
from the valid behavior could possibly create a scenario that
is not expected (e.g., disabling a safety mechanism) [28].

III. OVERVIEW OF OUR APPROACH

This section summarizes our approach to rehosting an
embedded application as a Linux application. Figure 2 shows

Task1 Task2 Taskm

RTOS Library / Kernel
Third
party
SDK

Portable Layer
MCU1 MCU2 MCUn

Peripherals

Ap
pl

ic
at

io
n

C
om

po
ne

nt
s

CLK GPIO SPI

Essential Non-Essential

Fig. 1. Architecture of Type-2 Embedded Systems: The application tasks
execute over the RTOS layer. The portable layer acts as a bridge between
application tasks, MCU and third-party SDKs, providing OS specific standard
APIs for hardware interactions, especially the peripherals which may be
essential like the Clock or non-essential like GPIO, SPI, etc.

Task1
Dispatcher

TaskTaskm
Third
party
SDK

Ap
pl

ic
at

io
n

C
om

po
ne

nt
s

Library / OS Interface

Linux Application Hosting an Embedded system 

Challenge 2: Preserving Execution
Semantics

C
ha

lle
ng

e 
3:

H
an

dl
in

g 
P

er
ip

he
ra

l
A

cc
es

se
s

St
an

da
rd

In
pu

t

Invoke handler

Challenge 1: Building Rehosted Application

Fig. 2. Overview of our Approach and Associated Challenges. The rehosted
system consists of the application components, the RTOS, and the other SDK
components. The main challenges are (1) building this rehosted application,
(2) preserving the execution semantics, and (3) handling peripherals.

an embedded application rehosted as a Linux application using
our approach to handling the three challenges.

A. Retargeting for a general-purpose ISA (X86-64)

As explained in Section I, to compile an application
for X86-64, we need to handle: (a) Toolchain differ-
ences between MCU specific compiler and the X86-64
compiler. (b) Inline assembly. Most MCUs use a RISC-
based ISA with custom toolchains suitable for the archi-
tecture of the processing unit. These support architecture-
specific options (e.g., -mthumb-interwork) and custom options
(e.g., -grecord-gcc-switches), often unavailable in commod-
ity compilers (e.g., CLANG). Consequently, naively replacing
the compiler with a commodity compiler fails. Using existing
build interceptor tools [29], we replace the embedded toolchain
and the dependent flags relevant to compilation and linking,
with Linux equivalents in the Clang toolchain.

The presence of inline assembly code pertaining to the MCU
architecture is a related challenge. We noticed that inline
assembly is mostly used to access MCU specific registers
and modify features of the MCU. As our main focus is on



void USART1_IRQHandler(void)
{

// Check if USART Receive Status is Set
if(USART_GetITStatus(USART1, USART_IT_RXNE)==SET)
{

// Reveive data from USART1 Data Registers
cChar = (uint8_t)USART_ReceiveData(USART1);
...

} //...
}

Listing 1: Example Interrupt Handler: The handler consists of
highly constrained checks on the register values before trying
to read from the USART (peripheral).

vulnerability detection, our intuition is that NOP’ing out inline
assembly components would not overly hinder the overall
analysis. We therefore handle inline assembly by commenting
it out from the source files.

B. Preserving Execution Semantics

The second challenge is to ensure that the application com-
ponents (e.g., tasks) in a rehosted Linux application have the
same execution semantics as in the target embedded system.
Task-based Execution: We noticed that many popu-
lar RTOSes have a Linux port [30]–[32], which implements
the portable layer (Figure 1) using Linux-based user space
libraries, e.g., providing task interface through pthreads li-
brary APIs. Consequently, we can have the RTOS compiled
for Linux, where all its functions (e.g., task, message queues)
are implemented through Linux user space libraries. We use
these ports by compiling the embedded application using the
Linux portable layer instead of the MCU alternative. The
resulting executable will run as a Linux application — using
existing library APIs (e.g., pthread) to achieve nearly the same
execution semantics as in the original embedded system.
Event-driven Execution: Interrupts enable event-driven exe-
cution by invoking handler functions (Listing 1) when trig-
gered. These handlers are recorded in the interrupt vector
table which is usually present in a MCU vendor-provided
assembly file (eg., startup.a). This cannot be executed on
the x86 machine. The application can register custom inter-
rupts by adding the handler addresses to the interrupt vector
table. We recognize such interrupt-registering functions in
the application and gather all the handlers. We then create
a special dispatcher task (Figure 2) which will be invoked
periodically by the RTOS scheduler. The interrupt handlers
will be executed as function calls by this task as shown below:

handlers <- array of registered handlers.
n <- number of handlers.

a = read_input();
idx = a % n;
handlers[idx](); // invoke a handler.

C. Handling Peripheral Interactions

Peripherals are accessed through special memory regions,
called MMIO regions, which need to be identified and handled.
Identifying MMIO regions: First, we need a way to dis-
tinguish MMIO access from normal memory access. We
observed that MMIO address ranges are usually hardcoded

in specific source files (e.g.,stm32f4xx.h [33]). Therefore, we
consider these addresses, usually within a specific range that
is indicated in the MCU datasheet as MMIO regions.
Peripheral Access Handling: We analyze source files of
a given application to identify accesses to MMIO regions.
Our threat model supposes that peripherals may be producing
malicious input. We, therefore, modify these accesses to use
standard input, so that a dynamic analysis can observe the
effect of different input values. Specifically, as we show below,
all reads from these regions will be replaced with reads from
standard input (), and all writes will be ignored — this is
in line with our threat model (Section II).
// ...
// Reading values from hardware registers
// pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM;
pllm = read_standard_input() & RCC_PLLCFGR_PLLM;

The Linux port handles the execution semantics without
depending on essential peripherals. Hence feeding random
data to these doesn’t affect the execution semantics of the
rehosted application. Feeding data from standard input to non-
essential peripheral accesses, such as GPIO and SPI, models
the embedded application’s external world interactions through
standard input of the corresponding rehosted application.
Handling Peripheral Access Checks: Peripherals use control
registers to communicate the availability of data. Applications
check for specific values in control registers before trying to
read data (Listing 1). We noticed that most of these conditions
are non-data-dependent, meaning that the code within the
conditional expression does not use the value in the condition.
We handle this by making such non-data-dependent MMIO
access-based conditions always true. This approach follows
the previous work T-fuzz [34], which showed that ignoring
non-data-dependent conditions improves code coverage.

IV. FEASIBILITY STUDY

We assessed the feasibility of our approach by applying it
to three real-world applications based on FreeRTOS [35].

InfiniTime: A smart watch application [36] based on nrf52
microcontroller. It uses many libraries — LVGL for UI,
NimBLE for its BlueTooth Stack, and JetBrains for fonts.

TinyUSB demo: A demo application of TinyUSB [37], a
popular cross-platform USB Host/Device stack for embedded
systems that runs on feather nrf52840 express board.

SmartSpeaker: A smart speaker application [38] using
stm32f407vet6, wm8978, and esp8266 for master control,
audio DA/ADC, and network communications, respectively.

We converted each of the above applications into Linux
applications using our approach (Section III). Specifically, we
built the applications using the Linux port of FreeRTOS, by
using compiler flags with that of X86-64 CLANG. We then
manually identified all MMIO accesses and replaced them with
reads from standard input. Finally, we created our interrupt
dispatcher task that invokes one of the registered interrupt
handlers based on a value read from standard input.
Preliminary Evaluation: We compiled each of these applica-
tions using ASAN [39] and executed them on Ubuntu 20.04
machine. The application tasks executed as expected without



1 __weak uint32_t HAL_RCC_GetSysClockFreq(void)
2 {
3 //...
4 // Reading values from hardware registers
5 pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM;
6 if(__HAL_RCC_GET_PLL_OSCSOURCE()
7 != RCC_PLLSOURCE_HSI)
8 {
9 // Usage of read value as divisor without checks

10 pllvco = (uint32_t) ((((uint64_t) HSE_VALUE *
11 ((uint64_t) ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN)
12 >> RCC_PLLCFGR_PLLN_Pos)))) / (uint64_t)pllm );
13 } //...
14 }

Listing 2: Division By Zero Error: Value pllm is read from a
peripheral register and used as divisor without any check ().

undefined crashes. Accesses to peripheral regions did not fault.
Execution proceeded as input was provided via standard input.

Testing: To check the robustness and bug-exposing ability of
these rehosted applications, we tested them using AFL++ [40]
for 24 hours. We found two previously unknown floating-point
exceptions in the STM32 driver code [33] — in the Clock
module and in the SPI driver. As seen in Listing 2, the
value pllm is read from a member of RCC peripheral register
(line 5). On line 12, it is used as a divisor without any check
for zero. STM32 has fixed the bug [41] in their latest release.

V. DISCUSSION AND FUTURE WORK

The scalability of our approach lies in the fact that most of
it can be automated and generalized, which we discuss here.
Automated Retargeting: Manual intervention for retargeting
steps like commenting out inline assembly, and handling
compiler errors because of inconsistent code practices (invalid
pointer casts) can be automated via source-to-source transfor-
mation. A recent tool, 3c [42], demonstrated the feasibility
of such an approach by modifying C code to add type
annotations automatically. For certain errors, such as linking
with undefined references to a symbol, it is harder to provide a
completely automatic approach. Therefore, we plan a human-
in-the-loop approach where our technique guides an engineer.
Automated Peripheral Handling: Handling peripherals au-
tomatically involves two tasks: (1) Identifying MMIO address
ranges; (2) Modifying these accesses with read from standard
input. The first can be automated using static analysis to
identify hardcoded addresses. However, handling the second
task just by using static analysis is hard as pointers to MMIO
addresses can be passed as arguments to functions. Conse-
quently, we need precise pointer analysis – a known hard
problem [43] – to identify which pointer accesses to be
modified. We plan to use a dynamic checking approach. We
can statically instrument all reads/writes; if a read is from
an MMIO address, then we return data from standard input and
ignore writes to MMIO addresses. Also, we plan to engineer
a configurable and feedback-driven mechanism for triggering
interrupts instead of a dispatcher task that is currently used.
Effective Testing: As explained in Section III-C, embedded
applications have non-data-dependent checks to read data from
peripherals (i.e., input data). Currently, we handle this by
manually disabling such checks. However, this identification

can be automated by using data dependency analysis [44]
and disabling them through compiler instrumentation. We
also believe that embedded applications could be a good
candidate for directly fuzzing individual functions owing to
less complex functions that require structured data, especially
at the hardware-interface level (Listing 2). We plan to explore
the function-level fuzzing of the rehosted applications.
Extension to other RTOS: While we considered applications
using FreeRTOS [45], our approach can be extended to other
open-source RTOSes like Zephyr [46] and Nuttx [47] as they
have the Linux port required by our retargeting scheme.
Systematic Evaluation: We plan to do a systematic evaluation
of the engineering cost vs. fidelity tradeoff, with application
level analysis in terms of coverage and vulnerability detection.

VI. RELATED WORK

Rehosting [11] has been an active area of research for
the past decade. Rehosting techniques can be categorized
into high-level or OS emulation, hardware-assisted partial
emulation, peripheral emulation through symbolic execution,
machine learning, or a combination of these.

Complete high-level emulation targets OS-level abstrac-
tions. Although this works well for Type-1 systems [48],
[49], which use standard OSes, these cannot be applied to
Type-2 systems because of the lack of a well-defined OS
interface. Consequently, no work exists that can perform high-
level emulation using RTOS on Type-2 systems [11]. The
rest of the categories focus on handling peripheral access by
executing an embedded system in an emulator. Hardware-
assisted partial emulation techniques use real hardware to
handle peripheral accesses. Few works employ manually or
semi-automatically created models for peripherals [12], [13],
[50]. ML-based techniques [14], [15] first record the pattern of
peripheral accesses and then try to use ML models to create
access patterns for these peripherals. Some techniques [51],
[52] use symbolic execution [53] to create peripheral models.

As shown by the recent systematization work [11], the
existing techniques are hard to extend for different peripherals
and depend on the existence of emulators [54], [55] of the
corresponding ISA. We are the first to bring a new dimension
to rehosting by exploring the possibility of rehosting embed-
ded application components (instead of the entire system) by
converting them to Linux applications. As shown by our pre-
liminary evaluation, our approach is feasible and can help in
finding hard-to-trigger bugs in embedded system components.

VII. CONCLUSION

We propose a new approach to rehosting embedded appli-
cations as Linux applications by providing solutions to the
associated challenges of retargeting to X86-64, preserving the
execution semantics, and handling the peripheral interactions.
We demonstrated the feasibility of our approach through a
preliminary study of three real-world applications. Our testing
of these rehosted Linux applications found two new bugs in
heavily used components. We also present possible techniques
and future plans to automate and extend our approach.



REFERENCES

[1] N. Arandia, J. I. Garate, and J. Mabe, “Embedded sensor systems in
medical devices: Requisites and challenges ahead,” Sensors (Basel),
vol. 22, no. 24, p. 9917, Dec. 2022.

[2] A. Goel, C. Tung, X. Hu, H. Wang, J. C. Davis, G. K. Thiruvathukal,
and Y.-H. Lu, “Low-power multi-camera object re-identification using
hierarchical neural networks,” in 2021 IEEE/ACM International Sympo-
sium on Low Power Electronics and Design (ISLPED). IEEE, 2021,
pp. 1–6.

[3] J. Garcia, Y. Feng, J. Shen, S. Almanee, Y. Xia, and Q. A.
Chen, “A comprehensive study of autonomous vehicle bugs,” in
Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, ser. ICSE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 385–396. [Online].
Available: https://doi.org/10.1145/3377811.3380397

[4] D. Papp, Z. Ma, and L. Buttyan, “Embedded systems security: Threats,
vulnerabilities, and attack taxonomy,” in 2015 13th Annual Conference
on Privacy, Security and Trust (PST), 2015, pp. 145–152.

[5] E. White, Making embedded systems: Design Patterns for Great Soft-
ware. O’Reilly, 2012.

[6] D. Anandayuvaraj and J. C. Davis, “Reflecting on recurring failures
in iot development,” in 37th IEEE/ACM International Conference on
Automated Software Engineering, 2022, pp. 1–5.

[7] T. A. Henzinger and J. Sifakis, “The embedded systems design chal-
lenge,” in FM 2006: Formal Methods: 14th International Symposium on
Formal Methods, Hamilton, Canada, August 21-27, 2006. Proceedings
14. Springer, 2006, pp. 1–15.

[8] A. Qasem, P. Shirani, M. Debbabi, L. Wang, B. Lebel, and B. L. Agba,
“Automatic vulnerability detection in embedded devices and firmware:
Survey and layered taxonomies,” ACM Comput. Surv., vol. 54, no. 2,
mar 2021. [Online]. Available: https://doi.org/10.1145/3432893

[9] J. Yun, F. Rustamov, J. Kim, and Y. Shin, “Fuzzing of embedded
systems: A survey,” ACM Comput. Surv., vol. 55, no. 7, dec 2022.
[Online]. Available: https://doi.org/10.1145/3538644

[10] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
“What you corrupt is not what you crash: Challenges in fuzzing embed-
ded devices,” in Network and Distributed System Security Symposium
(NDSS), 2018.

[11] A. Fasano, T. Ballo, M. Muench, T. Leek, A. Bulekov, B. Dolan-Gavitt,
M. Egele, A. Francillon, L. Lu, N. Gregory et al., “Sok: Enabling
security analyses of embedded systems via rehosting,” in Proceedings
of the 2021 ACM Asia conference on computer and communications
security (AsiaCCS), 2021, pp. 687–701.

[12] A. A. Clements, E. Gustafson, T. Scharnowski, P. Grosen, D. Fritz,
C. Kruegel, G. Vigna, S. Bagchi, and M. Payer, “HALucinator: firmware
re-hosting through abstraction layer emulation,” in Proceedings of the
29th USENIX Conference on Security Symposium, ser. SEC’20. USA:
USENIX Association, Aug. 2020, pp. 1201–1218.

[13] B. Feng, A. Mera, and L. Lu, “P2IM: Scalable and hardware-
independent firmware testing via automatic peripheral interface
modeling,” in 29th USENIX Security Symposium (USENIX Security 20).
USENIX Association, Aug. 2020, pp. 1237–1254. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/feng

[14] C. Spensky, A. Machiry, N. Redini, C. Unger, G. Foster, E. Blasband,
H. Okhravi, C. Kruegel, and G. Vigna, “Conware: Automated modeling
of hardware peripherals,” in Proceedings of the 2021 ACM Asia confer-
ence on computer and communications security (AsiaCCS), 2021, pp.
95–109.

[15] E. Gustafson, M. Muench, C. Spensky, N. Redini, A. Machiry, Y. Fratan-
tonio, D. Balzarotti, A. Francillon, Y. R. Choe, C. Kruegel et al.,
“Toward the analysis of embedded firmware through automated re-
hosting,” in 22nd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2019), 2019, pp. 135–150.

[16] C. Wright, W. A. Moeglein, S. Bagchi, M. Kulkarni, and A. A.
Clements, “Challenges in firmware re-hosting, emulation, and analysis,”
ACM Comput. Surv., vol. 54, no. 1, jan 2021. [Online]. Available:
https://doi.org/10.1145/3423167

[17] R. Chéour, S. Khriji, M. abid, and O. Kanoun, “Microcontrollers for
iot: Optimizations, computing paradigms, and future directions,” in 2020
IEEE 6th World Forum on Internet of Things (WF-IoT), 2020, pp. 1–7.

[18] F. Vahid and T. Givargis, Embedded System Design: A Unified Hard-
ware/Software Introduction, 1st ed. USA: John Wiley & Sons, Inc.,
2001.

[19] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz, “Sok: Sanitizing for security,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 1275–1295.

[20] M. Böhme, C. Cadar, and A. Roychoudhury, “Fuzzing: Challenges and
reflections.” IEEE Software, vol. 38, no. 3, pp. 79–86, 2021.

[21] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’05. New York, NY, USA:
Association for Computing Machinery, 2005, p. 190–200. [Online].
Available: https://doi.org/10.1145/1065010.1065034

[22] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis, “libdft:
Practical dynamic data flow tracking for commodity systems,” in Pro-
ceedings of the 8th ACM SIGPLAN/SIGOPS conference on Virtual
Execution Environments, 2012, pp. 121–132.

[23] E. D. Reilly, “Memory-mapped i/o,” in Encyclopedia of Computer
Science, 2003, pp. 1152–1152.

[24] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “Afl++ combining
incremental steps of fuzzing research,” in Proceedings of the 14th
USENIX Conference on Offensive Technologies, 2020, pp. 10–10.

[25] M. Shen, J. C. Davis, and A. Machiry, “Towards automated identifi-
cation of layering violations in embedded applications (wip),” in 2023
ACM International Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES). ACM, 2023.

[26] J. Davis, A. Thekumparampil, and D. Lee, “Node. fz: Fuzzing the server-
side event-driven architecture,” in Proceedings of the Twelfth European
Conference on Computer Systems (EuroSys), 2017, pp. 145–160.

[27] M. A. Arroyo, “Bespoke security for resource constrained
cyber-physical systems,” in ProQuest Dissertations and Theses.
Columbia University, 2021, p. 171, accessed 15 Feb. 2023.
[Online]. Available: https://www.proquest.com/dissertations-theses/
bespoke-security-resource-constrained-cyber/docview/2470276679/
se-2?accountid=13360.

[28] S. Kulandaivel, S. Jain, J. Guajardo, and V. Sekar, “Cannon: Reliable
and stealthy remote shutdown attacks via unaltered automotive micro-
controllers,” in 2021 IEEE Symposium on Security and Privacy (SP),
2021, pp. 195–210.

[29] travitch, “Whole Program LLVM,” https://github.com/travitch/
whole-program-llvm, 2015.

[30] osrtos, “List of open source real-time operating systems,” https://www.
osrtos.com/, 2023.

[31] M. Silva, D. Cerdeira, S. Pinto, and T. Gomes, “Operating systems for
internet of things low-end devices: Analysis and benchmarking,” IEEE
Internet of Things Journal, vol. 6, no. 6, pp. 10 375–10 383, 2019.

[32] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, “Operating systems
for low-end devices in the internet of things: A survey,” IEEE Internet
of Things Journal, vol. 3, no. 5, pp. 720–734, 2016.

[33] STMElectronics, “Stm32Lib,” https://github.com/STMicroelectronics/
STM32CubeF4.

[34] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: fuzzing by program
transformation,” in 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018, pp. 697–710.

[35] “FreeRTOS,” http://freertos.org.
[36] InfinitimeOrg, “Infinitime,” https://github.com/InfiniTimeOrg/

InfiniTime.
[37] hathach, “TinyUSB,” https://github.com/hathach/tinyusb.
[38] lovelyterry, “SmartSpeaker,” https://github.com/lovelyterry/

SmartSpeaker.
[39] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov,

“AddressSanitizer: A fast address sanity checker,” in 2012
USENIX Annual Technical Conference (USENIX ATC 12). Boston,
MA: USENIX Association, Jun. 2012, pp. 309–318. [Online].
Available: https://www.usenix.org/conference/atc12/technical-sessions/
presentation/serebryany

[40] M. Zalewski, “Afl technical details,” 2018. [Online]. Available:
https://lcamtuf.coredump.cx/afl/technical details.txt

[41] STMElectronics, “Stm32Lib Bug,” https://github.com/
STMicroelectronics/STM32CubeF4/pull/154.

[42] A. Machiry, J. Kastner, M. McCutchen, A. Eline, K. Headley, and
M. Hicks, “C to checked c by 3c,” Proceedings of the ACM on
Programming Languages, vol. 6, no. OOPSLA1, pp. 1–29, 2022.



[43] M. Hind, “Pointer analysis: Haven’t we solved this problem yet?”
in Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering, 2001, pp. 54–61.

[44] R. Bisbey, J. Carlstedt, D. Chase, D. Hollingworth et al., “Data de-
pendency analysis.” University of Southern California, Marina del Rey
Information Sciences Institute, Tech. Rep., 1976.

[45] F. Guan, L. Peng, L. Perneel, and M. Timmerman, “Open source freertos
as a case study in real-time operating system evolution,” Journal of
Systems and Software (JSS), vol. 118, pp. 19–35, 2016.

[46] “ZephyrRTOS,” https://zephyrproject.org/.
[47] “NuttxRTOS,” https://nuttx.apache.org/.
[48] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards

automated dynamic analysis for linux-based embedded firmware,”
in 23rd Annual Network and Distributed System Security
Symposium, NDSS 2016, San Diego, California, USA, February
21-24, 2016. The Internet Society, 2016. [Online]. Available:
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/
towards-automated-dynamic-analysis-linux-based-embedded-firmware.
pdf

[49] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun,
“FIRM-AFL: High-Throughput greybox fuzzing of IoT firmware via
augmented process emulation,” in 28th USENIX Security Symposium
(USENIX Security 19). Santa Clara, CA: USENIX Association,
Aug. 2019, pp. 1099–1114. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity19/presentation/zheng

[50] W. Zhou, L. Guan, P. Liu, and Y. Zhang, “Automatic firmware
emulation through invalidity-guided knowledge inference,” in 30th
USENIX Security Symposium (USENIX Security 21). USENIX
Association, 2021. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity21/presentation/zhou

[51] T. Scharnowski, N. Bars, M. Schloegel, E. Gustafson, M. Muench,
G. Vigna, C. Kruegel, T. Holz, and A. Abbasi, “Fuzzware: Using precise
MMIO modeling for effective firmware fuzzing,” in 31st USENIX
Security Symposium (USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022, pp. 1239–1256. [Online]. Available: https://
www.usenix.org/conference/usenixsecurity22/presentation/scharnowski

[52] N. Corteggiani, G. Camurati, and A. Francillon, “Inception:
System-Wide security testing of Real-World embedded systems
software,” in 27th USENIX Security Symposium (USENIX Security
18). Baltimore, MD: USENIX Association, Aug. 2018, pp.
309–326. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity18/presentation/corteggiani

[53] “KLEE.” [Online]. Available: http://klee.github.io/
[54] “QEMU.” [Online]. Available: https://www.qemu.org/
[55] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,

J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,” Computer, vol. 35, no. 2, pp. 50–58, 2002.


