
Systematically Detecting Packet Validation
Vulnerabilities in Embedded Network Stacks

Paschal C. Amusuo
Electrical and Computer Engineering

Purdue University
West Lafayette, USA
pamusuo@purdue.edu

Ricardo Andrés Calvo Méndez
Systems and Computer Engineering
Universidad Nacional de Colombia

Bogotá, Colombia
rcalvom@unal.edu.co

Zhongwei Xu
Systems and Computer Engineering

Xi’an JiaoTong University
Xi’an Shaanxi, China

2206515211@stu.xjtu.edu.cn

Aravind Machiry
Electrical and Computer Engineering

Purdue University
West Lafayette, USA
amachiry@purdue.edu

James C. Davis
Electrical and Computer Engineering

Purdue University
West Lafayette, USA
davisjam@purdue.edu

Abstract—Embedded Network Stacks (ENS) enable low-
resource devices to communicate with the outside world, facil-
itating the development of the Internet of Things and Cyber-
Physical Systems. Some defects in ENS are thus high-severity
cybersecurity vulnerabilities: they are remotely triggerable and
can impact the physical world. While prior research has shed
light on the characteristics of defects in many classes of software
systems, no study has described the properties of ENS defects
nor identified a systematic technique to expose them. The
most common automated approach to detecting ENS defects
is feedback-driven randomized dynamic analysis (“fuzzing”), a
costly and unpredictable technique.

This paper provides the first systematic characterization of
cybersecurity vulnerabilities in ENS. We analyzed 61 vulnerabil-
ities across 6 open-source ENS. Most of these ENS defects are
concentrated in the transport and network layers of the network
stack, require reaching different states in the network protocol,
and can be triggered by only 1-2 modifications to a single packet.
We therefore propose a novel systematic testing framework that
focuses on the transport and network layers, uses seeds that cover
a network protocol’s states, and systematically modifies packet
fields. We evaluate this framework on 4 ENS and replicated 12 of
the 14 reported IP/TCP/UDP vulnerabilities. On recent versions
of these ENSs, it discovered 7 novel defects (6 assigned CVES)
during a bounded systematic test that covered all protocol states
and made up to 3 modifications per packet. We found defects in 3
of the 4 ENS we tested that had not been found by prior fuzzing
research. Our results suggest that fuzzing should be deferred
until after systematic testing is employed.

Index Terms—Automated Testing, Validation, Cybersecurity,
Embedded systems, IoT, Networking, Empirical Software Engi-
neering, Fuzzing

I. INTRODUCTION

Embedded Network Stacks (ENSs) are software components
that enable network communication on embedded systems.
There are several ENSs with varied architectures tailored to the
semantics of individual embedded operating systems, such as
Contiki-ng [1] and FreeRTOS [2]. Unlike the network stacks
used by regular operating systems, ENSs run on embedded
systems with limited or no vulnerability protections [3]. As

a result, vulnerabilities in ENSs are severe and could be
remotely exploitable. In the last five years, many critical
defects have been discovered and reported in these ENSs [4]–
[6]. Detecting cybersecurity vulnerabilities in ENSs remains
an important challenge for securing the Internet of Things.

Automated software testing techniques for network stacks
use formal methods, static analysis, and dynamic analysis to
detect vulnerabilities. Formal methods, e.g., model checking,
provide strong guarantees [7]–[12] but are costly to apply and
maintain. Static analyses efficiently find defects [13]–[17], but
must be tuned to defect patterns and generate false positives.
Dynamic analysis is promising, especially fuzzing [18]–[22].
But while fuzzing ensures no false positives, it offers limited
guarantees. No dynamic works examine the systematic testing
of ENSs and consequently provide guarantees.

Our goal was to develop a systematic dynamic testing
technique, one that could provide certain guarantees about the
security of the ENS under test. But what guarantees should be
prioritized? Several studies [23]–[25] show that defect patterns
recur in software. Thus, identifying the characteristic defects
can help prevent such defects in the future. We analyzed 61
security defects that were previously reported across 6 embed-
ded network stacks to understand defect patterns. We found
that most ENSs vulnerabilities occur because an ENS directly
used certain fields in packet headers without proper validation.
Invalid values of such fields lead to out-of-bound (OOB)
reads, buffer overflows, and integer wraparounds. We call these
packet validation vulnerabilities. Our study also revealed
that the test suites used in ENSs are inadequate to detect
this recurring class of defect. To dynamically detect packet
validation vulnerabilities, an approach must be systematic in
varying fields (many different packet fields were problematic),
able to reach different protocol states (many different protocol
states were problematic), and able to find memory errors (most
vulnerabilities involve OOB memory access).

Based on this analysis, we propose EmNetTest, an auto-

1

ar
X

iv
:2

30
8.

10
96

5v
1

 [
cs

.S
E

]
 2

1
A

ug
 2

02
3

mated and systematic framework for dynamic testing of ENSs.
EmNetTest possesses three characteristics that enable it to
uncover known vulnerability patterns in ENSs. (1) System-
atic packet generation: EmNetTest systematically generates
validly constructed packets with invalid header fields or trun-
cated headers. (2) Stateful: EmNetTest provides sequences of
packets that get the ENS to different protocol states before
packet injection. (3) Memory focused: EmNetTest uses ad-
dress sanitizers with dynamic memory poisoning to detect
all memory corruptions. We implemented EmNetTest us-
ing PACKETDRILL which provides necessary scripting support
for testing network stacks. We enhanced PACKETDRILL to
support mutating arbitrary network packets.

We evaluated EmNetTest on 4 of the 6 ENSs whose vulnera-
bilities we studied: FreeRTOS, Contiki-ng, lwIP, and PicoTCP.
We also created ENSBench, a dataset of 12 vulnerabilities
by re-introducing previously known vulnerabilities into recent
versions of the ENSs. Our evaluation showed that Em-
NetTest replicated all the 12 vulnerabilities we attempted. In
addition, EmNetTest found 7 new vulnerabilities (zero days),
which can be remotely exploited by any user and potentially
allow arbitrary code execution. We compared our framework
with fuzzing. We ran 4 fuzzers from the Poncelet et al.
benchmarks [22] on the latest version of Contiki-ng (which
contains 5 vulnerabilities) and found that within 24 hours, no
fuzzer detected any of the vulnerabilities.

Our work shows the importance and effectiveness of system-
atic testing for detecting critical software defects. We invite the
community to explore systematic testing approaches, beyond
the current trend of automated randomized testing (fuzzing).

In summary, we contribute:
1) We perform the first comprehensive study (§V) of 61

reported ENS vulnerabilities, understand their root causes,
and provide insights into the packet sequences that trigger
these vulnerabilities.

2) We designed and implemented EmNetTest (§VI), an auto-
mated systematic testing framework for ENS. Our evalu-
ation shows that EmNetTest effectively finds known and
new vulnerabilities in ENS.

3) As part of our framework, we implemented PACKET-
DRILL++, an extended version of PACKETDRILL that
facilitates adversarial testing of network stacks and can be
used independently of our testing framework.

4) ENSBENCH: A dataset of 12 recreated and 7 new vulner-
abilities, packaged into recent versions of ENSs to support
the evaluation of other defect detection tools. EmNetTest
detects all vulnerabilities in this dataset.

Our vulnerability analysis and the implementation of Em-
NetTest are available (§XI).

II. BACKGROUND

A. Embedded Network Stacks (ENS)

Embedded Network Stacks (ENSs) enable network con-
nectivity for embedded systems. ENSs are either part of an
embedded operating system (Integrated ENS) [2], [26] or

1 static void prvCheckOptions(...) {
2 const unsigned char *pucPtr = ... ;

3 const unsigned char *pucLast = pucPtr +

4 (((pxTCPHeader->ucTCPOffset >> 4) - 5) << 2);

5 while(pucPtr < pucLast){
6 ...

7 else if((pucPtr[0] == TCP_OPT_MSS) &&
8 (pucPtr[1] == TCP_OPT_MSS_LEN)) {
9 uxNewMSS = usChar2u16(pucPtr + 2);

10 if(pxSocket->u.xTCP.usInitMSS > uxNewMSS){
11 ...
12 pxTCPWindow->xSize.

13 ulRxWindowLength = ((uint32_t) uxNewMSS) *

14 (pxTCPWindow->xSize.ulRxWindowLength /

15 ((uint32_t) uxNewMSS));
16 ...
17 }}
18 pucPtr += ...
19 ...
20 }}

Listing 1: CVE-2018-16523 and CVE-2018-16524: Snippet
showing a divide-by-zero defect triggered by the TCP MSS
Option (green) and an out-of-bound read (blue) triggered by
the TCP Data Offset. Both are in the FreeRTOS network stack.
EmNetTest can recreate these vulnerabilities (Table VII).

stand-alone libraries (Standalone ENS) [27], [28]. ENSs follow
a layered software architecture, each layer implementing a
specific protocol on the TCP/IP stack.

ENSs vulnerabilities pose a greater threat than those of
regular network stacks due to the absence of operating systems
and hardware vulnerability protection mechanisms. Regular
operating systems, e.g., Linux, provide more protection in
their OS design. This includes features such as Address Space
Layout Randomization (ASLR), Data Execution Prevention
(DEP), address space isolation, and Stack Canaries [29] that
prevent the exploitation of memory vulnerabilities. Also, mod-
ern processors include no-execute (Nx) regions that prevent
the unauthorized execution of codes in sensitive memory
regions [30]. Many embedded OSes and processors lack
these features [3], [31], increasing the ease of vulnerability
exploitation.

ENSs are designed for embedded systems, which are
resource-constrained, have real-time requirements, and often
lack common library support. ENSs are also tailored to
the underlying embedded operating system’s threading and
scheduling semantics. Consequently, they differ from regular
operating systems’ network stacks, which use the POSIX
standard [32] for portability. For example, the accept call
in FreeRTOS blocks until a successful TCP connection is
established or the timeout elapses. The accept call in lwIP is
non-blocking and defines a callback that would be called on
successful connection establishment. Meanwhile, Contiki-ng
has no accept syscall. Instead, it uses an event-driven callback
for all events, including a Socket connection event.

2

Fig. 1: A hex representation of a TCP packet showing the TCP header length field and the TCP MSS Option Value. Listing 1
describes two CVEs associated with these fields in the FreeRTOS ENS.

B. Internet Protocols and Network Packets

In this work, we focus on Internet Protocol (IP) or TCP/IP
suite, which includes various protocols that specify how data
should be packaged, addressed, and routed [33], [34]. The
TCP/IP suite is organized into a layered architecture (Fig-
ure 2). An Internet packet has elements for each layer of this
architecture, recursively structured as headers associated with
one layer and a payload associated with the next (Figure 1).
The protocol’s implementation processes the corresponding
headers at each level and passes the payload along.

Fig. 2: Layers of the TCP/IP stack. Our tool targets layers in
the red box (specific protocols in blue). Values in parentheses
indicate number of analyzed CVEs in each layer (§V-B3).

C. ENS Vulnerabilities

ENSs are usually implemented in C/C++ for performance
and compatibility reasons. They handle complex packet struc-
tures across multiple layers. Hence, ENSs are prone to defects
that can be cybersecurity vulnerabilities. With the absence of
sufficient protection mechanisms, the vulnerabilities in an ENS
can be exploited to either disable or remotely control the entire
system. Furthermore, these vulnerabilities can be triggered
remotely by any use with network access to the system.

Listing 1 shows the snippet corresponding to two
vulnerabilities, CVE-2018-16523 and CVE-2018-16524.
CVE-2018-16523 (divide by zero) occurs because the
TCP MSS option value, uxNewMSS, is used as the divisor
to calculate RxWindowLength. A TCP packet with an
MSS value of zero will lead to a divide-by-zero error.

CVE-2018-16524 (out-of-bounds read) occurs because offset
in the header, i.e., ucTCPOffset is used to compute a pointer
address pucLast, which is later read through pucPtr. These
vulnerabilities are triggerable remotely without authorization
by sending TCP packets. Furthermore, these vulnerabilities
can be exploited to gain control of the system because of the
lack of isolation mechanisms in embedded systems.

III. RELATED WORK

a) Traditional Testing: Many ENSs incorporate test
suites that help the maintainers validate the various function-
alities they develop. As shown in §V, these test suites are
inadequate. Although automated test generation tools [35]–
[37] exist, the tests generated by them are inadequate at finding
faults [38]. Furthermore, domain knowledge is required to use
these automated test-generation tools effectively.

Research and commercial tools exist to facilitate the easy
development of test suites for network stacks. PACKET-
DRILL [39], a network stack testing tool that enables the use of
scripts to test the end-to-end correctness behavior of network
stacks. PACKETDRILL focuses on testing functionality and
always generates valid packets, i.e., has valid and well-formed
headers. However, as found in §V, most vulnerabilities occur
because of invalid values in packet headers. InterWorking Labs
has commercial testing solutions for testing network protocols
and also uses malformed packets [40]. However, access costs
over $10,000,1 limiting its adoption in open-source projects
and the low-margin embedded systems marketplace [41].

b) Formal Methods: Several tools [10]–[12] have ex-
plored formal methods for verifying network functions. Za-
ostrovnykh [10] and Pirelli [12] developed formal verification
tools to automatically prove that a network function conforms
to a provided specification. However, these techniques do not
apply to multithreaded programs such as ENS. Microsoft’s
Project Everest [42] verifies various components of HTTPs and
has provided verified implementations of some cryptographic
libraries. FreeRTOS, maintained by AWS, also verifies their
network stack implementation, FreeRTOS+TCP [43]. These
formal methods are used to verify specific correctness prop-
erties of the network protocol implementations and do not
make complete guarantees about their security. As shown by
Fonseca et al. [44], formal methods guarantees are only as

1This quote was provided to us through personal communication.

3

good as their underlying assumptions. Hence, we still need to
assess the security of these systems through dynamic testing.

c) Fuzzing: Fuzzing [45] has found many software de-
fects. From a network perspective, fuzzing has been mainly
explored to find bugs in network applications. AFLNet [18],
StateAFL [19], and SnapFuzz [20] are three recent works
in this direction. These works focus on setting up a proper
communication channel with a network application and send-
ing test data to the application through well-formed network
packets. A recent work, TCPFuzz [21] uses fuzzing and
differential testing to detect semantic vulnerabilities in the
transport layer. TCPFuzz always generates valid packets and
cannot find vulnerabilities arising from invalid packets.

Poncelet et al. [22] applied several state-of-the-art fuzzing
tools to test individual functions of the Contiki-ng ENS.
They reported that testing lower-layer functions does not get
deep penetration. Conversely, directly testing upper network
layers increases the rate of false positives as some inputs
and corresponding packets are impossible as lower layers will
reject them. Furthermore, they fail to trigger code paths that
require the network stack to be in a particular state. This is
demonstrated in our evaluation (§VII) where EmNetTest found
various vulnerabilities in the well-test portions of Contiki-ng.

d) Vulnerability Studies: Several researchers have stud-
ied vulnerabilities’ characteristics in different software systems
[46]–[50]. Most of these works focus on well-provisioned
systems, e.g., desktop and web software. Few works study
vulnerabilities in embedded systems. Al-Boghdady et al. [49]
studied the characteristics of security vulnerabilities in IoT
operating systems. While they focused on characterizing the
CWEs (Common Weakness Enumeration) reported by static
analysis tools, their study does not cover how these vulnera-
bilities are triggered or detected. Similar to our work, Malik
& Pastore examined CVEs in Edge frameworks and found
that (1) the network components were a common source of
CVEs, and (2) specific values were often problematic, but
did not go into detail on ENSs nor evaluate a solution [51].
Other industry practitioners have also published reports of
security vulnerability analyses of ENSs they conducted. For
example, Zimperium [52] published a blog post containing
details of the vulnerabilities they discovered in FreeRTOS,
and Forescout published a report containing an analysis of
the 33 vulnerabilities they found and a list of observed com-
mon anti-patterns [5]. No prior work systematically analyzes
vulnerabilities in ENSs.

IV. KNOWLEDGE GAPS AND RESEARCH QUESTIONS

This work aims to fill two gaps. First, no study characterizes
cybersecurity vulnerabilities in ENSs. Second, no dynamic
system exists to systematically detect ENS cybersecurity vul-
nerabilities. We ask:
Theme 1: Vulnerability analysis
RQ1: What are the types and root causes of vulnerabilities?
RQ2: What packet sequences trigger ENS vulnerabilities?

Theme 2: State of practice for packet validation testing

RQ3: Are ENS tested for packet validation vulnerabilities?
Theme 3: Evaluating systematic testing with EmNetTest
RQ4: To what extent can bounded systematic testing uncover

packet validation vulnerabilities?

V. ENS VULNERABILITIES AND TESTING (RQ1-3)
This section presents methodology and results for RQ1-3.

To summarize our findings, ENS CVEs are typically packet
validation vulnerabilities. The studied ENS incorrectly handle
packets that are slightly malformed, sometimes from a partic-
ular protocol state. In 95% of CVEs, 1-2 fields are incorrect.
Repairs often involve a single if-statement.

A. Methodology

1) Repository Selection: We studied both integrated ENS
and standalone ENS (Table I). We selected ENSs integrated
into major open-source embedded operating systems. From
lists in survey papers [54], [55], we selected three embedded
OSes with over 1K GitHub stars: Zephyr (maintained by
Linux Foundation), Contiki-ng (Supported by Swedish Re-
search Institute), and FreeRTOS (maintained by AWS). From a
previous vulnerability study [6], we selected the top-3 actively-
maintained repositories (by GitHub stars) with reported CVEs.
These were PicoTCP, LwIP, and FNet.

2) Data Collection: We obtained vulnerability reports
(CVEs) from the National Vulnerability Database (NVD) [56].
We searched the NVD for the associated project. For in-
tegrated ENSs, we only considered vulnerabilities in the
networking stack. There were 81 total CVEs. We discarded
15 CVEs that omitted technical vulnerability details. After
preliminary analysis, we observed 61 of the remaining 66
vulnerabilities were caused by the poor validation of packets
received by ENS. We termed these packet validation (PV)
vulnerabilities. We removed the 5 non-PV vulnerabilities.

3) Data Analysis: One author analyzed each vulnerability
report and technical details, including screenshots explaining
vulnerable code, links to the vulnerability’s GitHub issue,
and the repairing pull request (PR).2 We indicate the specific
extracted features below — these are a typical set of features in
software failure analysis [57]. For soundness, a second author
analyzed a random sample of 13 vulnerabilities. We measured
interrater agreement using Cohen’s Kappa score [58]. We
obtained κ=0.82, indicating substantial agreement [59].

B. RQ1: Vulnerability Characteristics

Finding 1: Memory Out-of-Bound Read and Write are the
most common vulnerabilities (70%).
Finding 2: Missing length field validation and Missing
packet size validation are the most frequent root causes
and account for 69% of vulnerabilities.
Finding 3: The network layer contains most vulnerabilities
(41%), followed by the application layer (29%). Vulnera-
bilities are also found in every layer of the stack.

We describe CVE types, root causes, and affected components.

2During this analysis, we found 3 new CVEs (excluded from our analysis).

4

Table I: Embedded network stacks (integrated and standalone) whose CVEs we examined. C/C++ LoC (source, not tests)
measured with cloc [53]; for integrated ENS we measured only the network implementation. GitHub data as of May 2023.

Name Size (LOC) GitHub stars GitHub forks # CVEs studied # CVEs recreated # new vulns.
FreeRTOS(+TCP) 42.2K 3.6K (76) 1.2k (110) 11 5/5 0

Contiki-ng 41.6K 1.1K 635 24 2/2 2
Zephyr 95.7K 7.7K 4.8K 11 Not attempted Not attempted

PicoTCP 32.7K 1K 201 12 5/7 4
LwIP 84.3K 525 249 1 Not attempted 1
FNET 18.0K 106 46 2 Not attempted Not attempted

Table II: Proportion of CVE types. “Others”: double-free, DNS
cache poisoning, division-by-zero, and infinite loops.

Type # CVEs (%)
Out-of-Bounds Read (CWE 125,126,200) 22 (36%)
Out-of-Bounds Write (CWE 120,121,122,787) 21 (34%)
Integer Overflow (CWE 191) 5 (8%)
Integer Underflow (CWE 190) 4 (7%)
Null-pointer dereference (CWE 476) 4 (7%)
Other 5 (8%)

Total 61 (100%)

Table III: Implementation-level root causes of CVEs.

Root cause # CVEs (%)
Missing length field validation 23 (38%
Missing packet size validation 19 (31%)
Missing header value validation 7 (12%)
Missing integer wraparound validation 2 (3%)
Other 10 (16%)

Total 61 (100%)

1) Vulnerability Types: First, we group CVEs according to
their Common Weakness Enumeration (CWE) [60]. Table II
shows the result by this taxonomy. Memory over-read/write
(the first two rows) comprise 70% of the vulnerabilities.

2) Implementation Root Causes: We studied code and
repairs to learn the implementation-level root causes of CVEs.
Table III groups these into several recurring patterns. Roughly
69% of CVEs in ENSs (first two rows) result from missing
checks on length fields and data packet size. Two examples:
• Missing length field validation (CVE-2018-16524):

FreeRTOS uses the TCP header length field to calculate
the size of the TCP options region. However, it fails to
validate the length value. Consequently, an invalid length
value results in arbitrary memory read.

• Missing packet size validation (CVE-2022-36054):
Contiki-ng receives a 6LoWPAN packet and after header
compression, copies the packet into a buffer. If the packet
is the first fragment of a fragmented packet, only 148 bytes
are allocated. Contiki-ng doesn’t verify the received packet
size before copying it into this buffer. Consequently, a buffer

overflow could result in a remote code execution attack.
3) Vulnerable Layers: The left column of Figure 2 shows

the distribution of CVEs across the ENS layers. The top layers
for CVEs are network (41%) and application (29%).

C. RQ2: Packet Sequences That Trigger CVEs

Finding 4: 95% of vulnerabilities depend on one or two
fields and consequently can be triggered with a maximum
of two field changes. 40 different fields contribute to these
vulnerabilities.
Finding 5: 30% of CVEs are stateful, e.g., involving an
existing connection or a specific protocol state.

Here, we study packet sequences that can trigger these
CVEs. Each packet sequence has a prefix (i.e., state prefix)
p1p2 . . . pk−1 that brings the ENS to a vulnerable state, fol-
lowed by the vulnerability-triggering packet pk. For instance,
consider a vulnerability in processing a TCP FIN packet. To
trigger the vulnerability, we first need to send packets that can
set the ENS to a state where it accepts a FIN packet. Then, we
send a FIN packet triggering the vulnerability. Understanding
both parts enables a testing scheme to uncover real CVEs.

1) Properties of the vulnerability-triggering packets (pk):
Here, we investigate two aspects: (1) Root Cause Fields
(RCf): Which incorrectly-handled fields result in vulnerabili-
ties? (2) Dependent Fields (Df): How many fields of a packet
does a vulnerability depend on?

For instance, consider CVE-2018-16599, which is caused by
the incorrect validation of the UDP header length field. The
vulnerability can be triggered only if the NBNS Type field
is NET BIOS (0x0020) and the NBNS Flags field indicates
a response packet (0x8000). Here, RCf = 1 (for the length
field), whereas Df = 3 (for the length, type, and flags fields).

Table IV shows RCf and the number of CVEs resulting
from it. We see that 57 (93%) of CVEs arise from fields in
the protocol headers and options that are incorrectly handled.
Table V shows the distribution of CVEs according to Df . Most
vulnerabilities (58, or 95%) have Df ≤ 2. However, it is not
just one field that is problematic — 40 different fields across
15 protocols contribute to the 61 CVEs.

2) Properties of the packet sequence prefix: We studied
the vulnerable code and execution path to identify any states
involved. Table VI shows that 70% CVEs are stateless (can be
triggered with a single packet/no prefix) and that the remaining

5

Table IV: Distribution of CVEs based on the incorrect fields
(RCf) in the CVE-triggering packet. These fields often in-
cluded those specifying the length of the packet or option
component (rows 1-2), or specific values of other fields or
options (rows 3-4). Often, the packet was truncated (row 5).

Type Count(%)
Header length value 8 (13%)
Option length value 8 (13%)

Header field value 24 (39%)
Option value 2 (3%)

Truncated packet 15 (25%)

Others 4 (7%)

Total 61 (100%)

Table V: Distribution of CVEs by # of dependent fields (Df).

Dependent Fields # CVEs
1 34 (56%)
2 24 (39%)
> 2 3 (5%)

Total 61 (100%)

30% (12 CVEs) depend on the state of the system. Of these,
13 CVEs, occurring on stateful protocols, require the protocol
to be in a specific set of states. 5 other CVEs depend on the
properties of the previously-sent packet(s).

D. RQ3: Testing Suite Characteristic

We analyzed the test suites of four ENSs to understand
why the known CVEs, which we discussed in §V-B, existed.
Based on the CVE characteristics, we looked for four aspects
of validation: (1) Unit tests involving input packet processing
operations with malformed input; (2) Capability of injecting
specific (and possibly malformed) packets; (3) Tests involving
packets with invalid headers (cf. Table IV); and (4) Tests
involving statefulness (cf. Table VI).

Table VI: Distribution of vulnerabilities based on the stateful-
ness required to expose the vulnerability.

State Required Protocol # CVEs
Stateless – 43 (70%)

Requires protocol state TCP 6 (10%)
Requires protocol state RPL 1 (2%
Requires protocol state BLE 2 (3%)
Requires protocol state MQTT 4 (7%)
Requires packet sequence 6LoWPAN 3 (5%)
Requires packet sequence 802.15.4 2 (3%)

Total All 61 (100%)

Finding 6: ENSs are validated using end-to-end simulation
tests and unit tests. The actual implementations of these
tests are unique in each ENS (no standard test framework).
Finding 7: While some ENSs include packet injection
tests, these are regression tests for specific CVEs. One ENS
provides packet seeds and a harness for stateful fuzzing.
Finding 8: None of the ENSs systematically check invalid
header or option fields, nor include unit tests for the various
operations performed on an input packet.

FreeRTOS: FreeRTOS validates its ENS with end-to-end
tests, unit tests, and formal verification. The end-to-end tests
use the sockets interface to establish network connections
and validate behaviors of the network stack. They provide
(incomplete) memory safety proofs for main packet processing
functions. Not all functions are verified and the provided
proofs depend on the corrections of some unverified functions.
FreeRTOS has some packet injection tests with invalid head-
ers, but all cases are regressions for past CVEs.

Contiki-ng: Contiki-ng is validated with network simulation
using cooja [61], a packet injection test, and fuzzing. The
network simulation tests involve various end-to-end tests under
different simulated network environments. Their packet injec-
tion tests use a fixed set of network packets. These are mostly
regression tests to check for previous defects or vulnerabilities.
Their packet injection framework is also used for fuzzing.

PicoTCP: PicoTCP validates with unit tests and end-to-end
demo applications. The provided unit tests are mostly on non-
packet related tasks, such as IP address-to-string conversion
and socket tests. The demo applications test supported proto-
cols in different network environments.

LwIP: LwIP validates with unit tests, network stress testing,
and fuzzing. Their unit tests mostly test the output operations
of the network stack, not the input packet processing functions.
Several unit tests configure the test socket to specific protocol
states. For stress, they measure the reliability of simulated
networks while increasing the number of nodes and messages
in the network. They also provide a fuzzing harness and
fuzzing seeds for the different protocols.

VI. EMNETTEST: DESIGN AND IMPLEMENTATION

A. Design Requirements

Based on our findings from Theme 1, an automated testing
framework to detect PV vulnerabilities in ENSs should have
three characteristics:
• Ability to Detect Memory Issues: Based on Finding 1, it

should detect memory corruption vulnerabilities.
• Systematic Packet Generation: Based on Findings 2 and

4, it should systematically generate valid test packets with
incorrect header values and truncated headers.

• Stateful: Based on Findings 3 and 5, it should drive the ENS
stack to different protocol states for multiple protocols.

Such a framework would improve the state of the art in ENS
testing (cf. §III and Findings 6-8).

6

B. Design
EmNetTest meets these requirements. Figure 3 illustrates.
• Memory focused: Address Sanitization (ASAN) [62]

with ENS specific instrumentation.
• Systematic packet generation: An ordered generation

algorithm can systematically generate all packets but is
prioritized for packets that trigger known PV CVEs.

• Stateful: We build on the PACKETDRILL tool [39]. It pro-
vides packet sequences that cover some relevant protocols.
We extend it to additional protocols and employ a seed set
of state-covering sequences (packet sequence prefixes).

1 # Input: Num. entities N, stride S, packet pk
2 # Output: Yields next packet for this config.
3

4 # SELECTION of N fields and options
5 {f1, · · · , o1, · · ·} = nextPacketEntities(N) # Generator
6

7 # INTERPOLATION
8 valsf1 = interpolate(f1, S)
9 . . .

10 valso1 = interpolate(o1, S)
11 . . .
12

13 # GENERATION (uses Python itertools)
14 for f1 in valsf1:
15 . . .
16 for o1 in valso1:
17 . . .
18 pk.modify(f1, · · ·, oi, · · ·)
19 yield pk
20 # Caller sends prefix + |pk| and checks result

Listing 2: Systematic packet generation. The caller imposes
order by working from smaller to larger N and varying S.

1) Custom Address Sanitization with Dynamic Address Poi-
soning (DAP): Memory corruptions (i.e., out-of-bounds read
and write) in embedded systems may not lead to program
crashes [63] (SEGSEGV). ASAN is a well-known technique to
convert memory corruptions into program crashes. However,
ASAN assumes the target application is using standard mem-
ory allocation and deallocation functions (e.g., malloc/free)
— which is not the case with ENSs, as they use custom
allocators. To handle this, we use ASAN’s Dynamic Address
Poisoning (DAP) support. For each ENS, we modified its
custom allocators such that after every allocation, the corre-
sponding memory chunk will be unpoisoned (i.e., OK to use).
Similarly, we modify deallocator or release functions to poison
the corresponding memory chunk (i.e., Invalid to use).

We modify packer copying routines to detect out-of-bound
memory accesses during packet processing. Specifically, after
a packet is received and copied into the buffer, we poison the
rest of the allocated buffer that is not covered by the received
packet. Then, ASAN will detect any bytes read or written
beyond the bounds of the allocated buffer.

2) (Ordered) Systematic Packet Generation: We system-
atically generate ordered test packets. Systematic means all
packets are generated. Ordered means an ordering over the
packets such that likely-useful packets are generated early.

We describe our approach, formalized in Listing 2. We
assume a prefix sequence of packets p1p2 . . . pk−1 to reach
a desired protocol state, followed by test packet pk (§V-C).
The algorithm generates all valuations of pk.

Systematic: Packet pk is a sequence of bytes consisting
of required header fields, optional fields, and a payload. The
payload was not the cause of ENS CVEs (§V) so we exclude it.
Different subsets of the header and option fields are selected
to modify (generator on line 5). We obtain possible values
for each following an interpolation sequence from minimum
(e.g., 0x00) to maximum (e.g., 0xff) along a stride S (line
7). All combinations are explored (line 13). This ensures we
can detect vulnerabilities that either depend on the minima or
maxima, or on a range of values as determined by the stride.
To generate all pk, choose maximum N and a Stride of 1.

Ordered: We order the generation of pk starting from 0
entities (the original pk), then 1 entity, and so on, discarding
repeating packets. This order places the likely-to-be-useful
packets early in the sequence — per Table V, most CVEs
depend on at most 2 fields (i.e., Df ≤ 2). This suggests that
most of the vulnerabilities could be found with N = 2. During
ENS validation, engineers may parameterize by bounding the
maximum number of fields to select N . They may trade
exhaustiveness vs. cost via the search stride S.

Handling truncate: As reported in Table IV, 25% of the
analyzed CVEs involved a packet that was truncated to shorter
than the expected length. The caller of Listing 2 generates
these with modest post-processing: remove bytes from the end
of the packet and then update checksums in earlier layers.

3) Stateful: In our CVE study, we found that many CVEs
can only be triggered from certain states of a protocol. We
examined existing network testing tools to identify one that can
reach many states of a protocol. We chose the PACKETDRILL
tool. It is designed to drive a network stack through the state
machine for various protocols [39]. It supported two transport-
layer protocols (TCP, UDP) and two network-layer protocols
(IPv4, IPv6), with a corpus of >200 scripts that test different
functionalities of the TCP protocol.

We developed a corpus of 7 Packetdrill scripts that can reach
the 7 different TCP states where a packet can be injected
(LISTEN, SYN-SENT, ESTABLISHED, FIN-WAIT-1, FIN-
WAIT-2, LAST-ACK, CLOSE-WAIT). We had only one UDP
script as UDP has no states. We use these scripts as test
script templates. As shown in Figure 3, for each test case
and mutation instruction generated, we append the mutation
instruction to all template scripts of the protocol being tested.
This enables us to test all protocol states with the same input.

C. Implementation

Our EmNetTest implementation is 3,426 lines of C/C++ and
Python. We describe pertinent aspects of the implementation.

1) Portability: The purpose of EmNetTest is to support
many ENSs. Portability is a priority. As noted in §II, ENS
have diverse architecture and semantics. We de-coupled the
EmNetTest packet generation from the delivery and evaluation
of packets. PacketDrill generates a combination of socket

7

Fig. 3: Overview of the design of EmNetTest. It systematically generates mutation instructions by repeatedly taking a protocol
header, selecting combinations of fields, and iterating through possible values (blue box ①). It achieves statefulness by using
a set of test script templates that can explore different protocol states (green box ②). Packetdrill++ interprets each test script
and sends the syscall and packets to the SUT (ENS). The per-ENS Test Agent maps received POSIX syscall instructions to
appropriate behavior and execute the behavior on the ENS (black box ③). The SUT is instrumented with dynamic poisoning
and compiled with ASAN to aid the detection of memory corruption (red box ④).

commands and network packets. As shown in Figure 3, a
per-ENS Test Agent maps POSIX socket commands to the
appropriate behavior on the ENSs. This includes both minor
naming changes (e.g., socket vs FreeRTOS socket) as well as
more substantial semantic changes (e.g., rendering the asyn-
chronous socket semantics of LwIP into synchronous POSIX
semantics). This test agent (server) on the ENS receives socket
interactions and packets and delivers them to the ENS. The rest
of the system is agnostic to the ENS under test.

2) PACKETDRILL++: We implemented the network test-
ing tool as an extension of PACKETDRILL. We extended
the PACKETDRILL grammar to support mutation instructions.
We implemented a packet mutator component in C that, given
a packet and a set of mutation instructions, mutates the packet
following the instructions. For example, the instructions might
be to change the value of a field, insert an option, and truncate
the packet. We modified PACKETDRILL so that it loads the
Packet mutator as a shared library and uses it for packet
mutation. PACKETDRILL++ also interacts with our portable
bridge component instead of directly with the network.

3) Packet Injection: EmNetTest uses a virtual network
interface (TAP [64]) to send mutated packets to Embedded
Network Stack. A virtual network interface allows us to
inject packets at the lowest layer of the network stack, which
simulates the exact same behavior as when the ENS receives
the packet from the internet, removing the possibility of false
positives. Furthermore, a virtual network interface does not
introduce the same network latency that would be introduced
by a normal network interface connected to the internet.

4) Parallelizing test execution: Once packets are generated
systematically, executing them is an embarrassingly parallel
problem. We decoupled test case generation from execution

using the producer-consumer pattern, saturating our servers.
5) Deduplicating vulnerabilities: EmNetTest systemati-

cally generates packets, which may result in many redundant
defects. Our crash monitor analyzes the observed failures and
deduplicates them based on the stack trace (line of crash).

6) Linux versions of ENSs: Although ENSs support many
boards, they also support Linux as a development environ-
ment [65]. EmNetTest uses the Linux versions of the ENSs.
This enables EmNetTest and the ENS to run on the same
machine, enhancing communication between them. This does
introduce the risk that our results mask defects in HW/SW
integration on real boards, e.g., due to layering issues [66].

VII. RQ4: SYSTEMATIC TESTING WITH EMNETTEST

We evaluate our systematic testing framework by running
EmNetTest on 4 embedded network stacks. Our evaluation
aims to understand the extent our systematic testing approach
can uncover packet validation vulnerabilities. Specifically, we
answer the following questions.
• RQ4.1: Can EmNetTest replicate known vulnerabilities?
• RQ4.2: Can EmNetTest discover new vulnerabilities?
• RQ4.3: What are EmNetTest’s performance characteristics?
• RQ4.4: How does EmNetTest compare to fuzzing?

1) Experimental Setup: We evaluated N = 1,2,3 and we
used a stride that yielded 4-6 values for each field (Listing 2).

We used the following servers for our experiments:
two 32-core machines (Ubuntu 22.04, Intel Xeon W-2295
CPU@3GHz); and one 64-core machine (Ubuntu 22.04, AMD
EPYC 7543P CPU@2.8GHz).

A. Embedded Network Stack Selection
We selected 4 ENSs for our evaluation — FreeRTOS+TCP,

Contiki-ng, PicoTCP, and LWIP. These stacks from §V had

8

the highest proportion of Network and Transport layer vulner-
abilities, suiting them for EmNetTest.

B. ENSBench: Vulnerability Dataset Contruction

To enable us to answer RQ4.1, we replicated 12 known
vulnerabilities in recent versions of 3 selected ENSs —
FreeRTOS, Contiki-ng, and PicoTCP.3 These were selected out
of the 14 reported vulnerabilities that affected the IPv4, IPv6,
TCP, and UDP protocols in the selected ENSs layer protocols.
We skipped 2 vulnerabilities because Packetdrill lacked sup-
port for the features they required (IPv6 fragmentation). We
studied their fixing commits to replicate the vulnerabilities
and reverted the fix. Porting the vulnerabilities to the latest
version allowed us to have all vulnerabilities in a single build
for testing. Table VII describes the CVEs we recreated.

Table VII: CVEs EmNetTest recreates. The last column in-
dicates dependent fields and kind of changes that expose
CVE. Notation: F—set header Field; O—insert+set Option;
T—Truncate header; Rd—Read; Wr—Write.

ENS CVE-ID Type Operators
FreeRTOS 2018-16523 Div-by-zero 1 (O)

2018-16524 OOB Read 1 (F)
2018-16526 OOB Write 1 (O)
2018-16601 Integer underflow 1 (F)
2018-16603 OOB Read 1 (T)

Contiki-ng 2021-21281 OOB Read 1 (F)
2022-36053 OOB Write 2 (F, T)

PicoTCP 2020-17441 OOB Read 2 (F, F)
2020-17442 Integer Overflow 2 (F, O)
2020-17444 Integer Overflow 2 (F, O)
2020-17445 OOB Read 2 (F, O)
2020-24337 Infinite Loop 1 (O)

C. RQ4.1: Replicating Known Vulnerabilities

To evaluate EmNetTest’s ability to expose defects, we ran
EmNetTest on vulnerable versions of FreeRTOS, Contiki-ng
and PicoTCP. Our test found all vulnerabilities in the tested
stacks as listed in Table VII using a maximum of 2 mutations.
Table VII also shows the mutation types performed on the
packet that exposed each vulnerability. These vulnerabilities
were triggered by a total of 9 distinct fields. IPv6 extension
header length caused 3 while TCP data offset caused 2.

D. RQ4.2: Discovering New Vulnerabilities

To evaluate EmNetTest’s ability to discover new defects,
we ran EmNetTest on recent versions of the ENS listed in
§VII-B. For FreeRTOS and Contiki, we only ran the tests for
IPv4 and IPv6 respectively as that was the only IP version
they supported. Table I shows the count of vulnerabilities we
found in each of the selected stacks. Table VIII describes the
various vulnerabilities that we found. In our artifact, we also

3LwIP had no reported IP/TCP vulnerabilities.

included the specific scripts that exposed each vulnerability
and a detailed description and impact of each vulnerability.

Contiki-ng and PicoTCP confirmed the vulnerabilities we
reported, assigned CVE identifiers, and repaired the vulnera-
bilities. We have been unable to establish communication with
the LwIP team.

Table VIII: New vulnerabilities EmNetTest found. Notation:
Same as Table VII.

ENS CVE ID Description Config.

FreeRTOS — No vuln found

Contiki-ng 2023-34100 OOB Rd (TCP MSS) 1 (O)
2023-37459 OOB Rd (TCP flags) 1 (T)

PicoTCP 2023-35847 Div-by-zero (TCP MSS) 1 (O)
2023-35846 OOB Rd (TCP fields) 1 (T)
2023-35849 OOB Rd (IP checksum) 1 (F)
2023-35848 OOB Rd (TCP MSS) 2 (O, O)

LwIP L1 OOB Rd (TCP options) 1 (O)

We attempted to evaluate EmNetTest on commercial ENSs.
We contacted five vendors of real-time OSes and embed-
ded network stacks: WindRiver (VxWorks), Segger (emPower
OS, embOS, emNet), Green Hills Software (GHNet), Lynx
(LynxOS), and Sysgo (PikeOS). All declined to allow us to
evaluate on their systems.

E. RQ4.3: Performance Characteristics

Test Execution Duration: We measured the execution du-
ration of EmNetTest by varying the number of dependent
fields (i.e., N in Listing 2). Table IX shows the test execution
duration on PicoTCP. For each value of N , we executed tests
over all supported protocols (IPv4, IPv6, TCP, UDP) using 32
consumer instances. Our results in §VII-C and §VII-D show
that all reported and new vulnerabilities could be found with
only N=1 and N=2 tests.

Table IX: Performance results from testing on PicoTCP.

Task # Test cases Instances Time
One test case 1 1 0.5 sec
N=1 test 2,211 32 2.13 min
N=2 test 134,296 32 2.21 hr
N=3 test 5,303,604 32 63.17 hr

Coverage Analysis: We analyzed the coverage achieved by
running EmNetTest on 4 ENSs compiled with gcov.

Table X shows the line coverage achieved executing dif-
ferent tests. For the Integrated ENSs, we consider only the
coverage of the networking component. The first two rows
show the coverage for two PACKETDRILL tests with scripts
representing different TCP states. The third row represents
the coverage achieved when we ran stateful test scripts rep-
resenting all TCP states. The last row indicates the coverage

9

Table X: Table showing the line coverage achieved by different
tests when executing EmNetTest on all the tested stacks.

Test FreeRTOS Contiki PicoTCP lwIP
Script 1 37.4% 25.4% 11.3% 32.6%
Script 2 34.1% 24.8% 5.9% 29.9%
All Scripts 51.3% 29.6% 12.7% 40.0%
N=1 tests 53.4% 33.4% 14.8% 43.6%

when we ran a systematic test with N=1. By using test scripts
that represent different TCP states, we achieved a significant
increase in coverage. The little coverage increase caused by
N=1 tests shows that packet validation vulnerabilities exist in
codes that are covered by normal executions. As shown in
Table VIII, this N=1 was also sufficient in detecting most of
the new vulnerabilities we found. We could not get very high
coverage as the ENSs contained protocol implementations in
other network layers that we don’t currently support.

F. RQ4.4: Fuzzing Comparison

We used the Contiki-ng fuzzing benchmark provided by
Poncelet et al. [67] to demonstrate that within a time budget,
fuzzing is not deterministic in uncovering vulnerabilities.
We selected 4 fuzzers from the benchmark (MOpt [68],
Intriguer [69], SymCC [70], and AFL). The first 3 had the best
results during Poncelet et al.’s evaluations. AFL is a standard
comparison point. To help the fuzzers, we (1) disabled check-
sums in Contiki-ng, and (2) augmented the fuzzers’ seed set
with EmNetTest’s comprehensive set of seed packets.

Table XI: Fuzzing results with the Contiki-ng fuzzing bench-
marks after 24 hours. Version 1 contains a version of Contiki-
ng used by the Poncelet et al. authors for evaluation. It
contains the vulnerabilities reported by the authors in their
paper. Version 2 is the most recent commit on Contiki-ng
on GitHub as of May 1st, 2023. This version contains 5
vulnerabilities, including 2 detected by EmNetTest. These
vulnerabilities should cause a crash in V2 if triggered.

Metrics Version 1 [22] Version 2
paths covered 190 316
Crashes found (#) 21 0
Hangs found (#) 12 0

After 24 hours, the second column of Table XI shows none
of the fuzzers triggered any crash in vulnerable Version 2.

Comparison with other network protocol fuzzers: As noted
in §III, there are other network fuzzers, e.g., TCPFuzz [21] and
AFLNet [18]. They are not appropriate for the vulnerabilities
we studied. For example, AFLNet targets the application
layer of the network stack, while TCPFuzz is concerned with
semantic defects on legitimate input.

VIII. DISCUSSION

EmNetTest vs Fuzzing vs Static Analysis: Fuzzing is the
most used technique for detecting vulnerabilities. As a dy-
namic analysis technique, fuzzing provides a low rate of
false positives. But fuzzing requires significant computing
resources to be effective, limiting developers’ ability to detect
vulnerabilities at development time.

Like fuzzing, EmNetTest is also a dynamic analysis tech-
nique. But unlike fuzzing, it completes and provides guaran-
tees that the known patterns of packet validation vulnerabilities
do not exist in the ENS.

Static Analysis is another widely used approach that suc-
ceeds in detecting specific vulnerability patterns. Unlike dy-
namic analysis, many static analysis techniques consider only
specific code sections rather than the entire software and give
off a lot of false positives [71]. We briefly ran CodeQL
[72] on the ENSs repositories and found that it struggled
with inter-procedural cases, failing to find any known or new
vulnerabilities we detected.
Learning from Intra and Inter-product Vulnerabilities: Our
results in §VII-D show that the known vulnerability patterns
still exist in ENSs. We found cases in Contiki-ng where
they added regression tests for individual errors but failed to
generalize these tests to classes of errors. We recommend that
software engineers learn from the individual errors that occur
in their software, and prepare generalized test cases that can
detect similar errors.

We also found that the same vulnerabilities recur in dif-
ferent software implementations. For example, CVE-2023-
35847 (§VII-D) in PicoTCP is the same as CVE-2018-16523
in FreeRTOS. CVE-2023-34100 in Contiki-ng is the same
as CVE-2018-16524 in FreeRTOS. Anandayuvaraj et al. al-
ready performed preliminary studies on this phenomenon of
recurring failures in software engineering [73] and initiated
conversations towards a failure-aware software development
lifecycle [23], [74]. Our findings in this paper further em-
phasize this need for software engineers to learn from the
reported vulnerabilities and failures of other software products.
Furthermore, tools like EmNetTest can help by ensuring that
new vulnerability patterns, discovered in one software product,
can be easily detected and fixed in every other similar software
product they may exist in.
Integrating Security Protections to Embedded Firmware:
As shown in §V-B, memory corruption is the most prevalent
class of vulnerability reported in ENSs. In addition to detecting
and fixing these vulnerabilities, protection mechanisms could
also be implemented to harden the embedded devices and
mitigate the impact of exploitations. Protection techniques
such as stack canaries, Address Space Layout Randomization
(ASLR), and No-Execute (Nx) regions exist for regular op-
erating systems which makes vulnerability exploitation diffi-
cult. Unfortunately, Yu et al. [3] showed that these security
protection techniques are missing in embedded systems. Prior
research [41], [75], [76] identified cost as a factor that limits
the integration of security in embedded systems. Our work

10

further illustrates the importance of integrating these security
defenses into embedded systems. Hence, we advocate for
further research in developing and deploying cost-effective
protection mechanisms in embedded systems.

Improving Testing Practices for Open-source Software: As
seen in §V-D, different ENSs employ diverse methods and
implementations for testing. While many of the test suites had
unit tests, the size and robustness of the tests varied across
different ENSs. This suggests the need for a standard test
framework for testing similar software systems such as ENSs.

Future Works: We identify the following opportunities for
research to improve this work.
• Checkpoint-based Optimization: Stateful testing involves

driving the ENS to a specific state before injecting the test
packet. This introduces significant overhead. The use of a
deferred forkserver [77] does not work on multi-threaded or
networked applications. In the future, we hope to explore the
use of process checkpointing and recovery [78] to optimize
the execution of stateful tests.

• Smart Test Case Generation: Our current EmNetTest design
depends on generating packets where all combinations of
fields, up to a value k, can be mutated at a time. We plan to
explore using program and dataflow analysis to understand
which packet fields interact or depend on each other during
packet processing and prioritize testing the combinations of
these interacting fields. This approach will build on existing
research on concolic and hybrid testing that integrates static
analysis, dynamic analysis, and symbolic execution to aid
vulnerability detection [79], [80]. This improvement will
lead to optimizations in the time to run multiple field
combinations shown in §VII-E.

• Application to Other Protocols: Our results show that vul-
nerabilities in all network protocol implementations share
similar patterns. Hence, we have two questions. Would we
find similar patterns in the implementations of other proto-
cols? Would vulnerabilities in different implementations of
the same protocols or protocol groups (e.g., cryptographic
protocols) share the same patterns?

IX. LIMITATIONS AND THREATS TO VALIDITY

Limitations of EmNetTest: While EmNetTest is effective
in discovering packet validation vulnerabilities, it has the
following limitations
• Our implementation of EmNetTest is limited to the protocols

supported by Packetdrill (TCP, UDP, IPv4, IPv6, and ICMP).
We believe EmNetTest will work for protocols in other
layers as they contain vulnerabilities with similar patterns.

• Due to the different architectures of ENSs, EmNetTest
requires a distinct Test Agent for each ENSs. We designed
a portability layer that makes it easy to implement a Test
Agent for any ENS.

Construct Validity: We studied CVEs using well-known
classifications, minimizing construct-related risks. To mitigate
further, we used inter-rater agreement as a check.

Internal Validity: We assessed the testing practices of ENSs
by looking at their test suites. The maintainers of these ENSs
may have other testing processes which we don’t know about.
External Validity: We mitigate one generalizability concern
by examining multiple ENS of both kinds (integrated and
standalone). We acknowledge that the CVEs in our study (§V)
may have been found by a small number of persons using
specific techniques. There may be other vulnerability patterns
in ENSs not detected or reported. Nevertheless, the patterns
we observed in these CVEs helped us find new vulnerabilities.

X. CONCLUSION

Embedded Network Stacks play an important role in en-
abling interconnectivity in cyber-physical systems. Vulnera-
bilities in these stacks can have severe consequences. We
conducted the first study of packet validation vulnerabilities
in ENS. We studied 61 vulnerabilities in 6 ENSs. Our results
revealed the root causes of packet validation vulnerabilities
and the packet sequences needed to trigger them. We found
that detecting many of these vulnerabilities required only
simple mutations to the test packet. We designed EmNetTest
following these findings and evaluated our implementation on
4 ENSs. We discovered 12 known and 7 new vulnerabilities.
Our results show that appropriate systematic testing techniques
can aid the timely and guaranteed detection of specific vul-
nerability classes. Other non-deterministic dynamic analysis
techniques, such as fuzzing, should be deferred until appli-
cations have been adequately tested. Furthermore, EmNetTest
will help maintainers of ENSs detect these packet validation
vulnerabilities before deploying to the public.

XI. DATA AVAILABILITY

Our artifact is available at https://doi.org/10.5281/zenodo.
8247917. In it, we provide:
1) A spreadsheet containing our analysis of known ENSs

vulnerabilities.
2) The source code of EmNetTest and subcomponents.
3) ENSBench: Dataset of PACKETDRILL scripts to trigger the

known and new vulnerabilities reported in this paper.

XII. ACKNOWLEDGEMENTS

We are grateful to the reviewers as well as J. Jones, W.
Davis, and S. Bagchi for feedback on the manuscript. We
thank P. Doshi and K. Robinson for assistance in data col-
lection. J. Davis acknowledges support from NSF #2135156.
A. Machiry acknowledges support from NSF #2247686 and
DARPA N6600120C4031. Davis and Machiry acknowledge
support from Rolls Royce.

The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. Any opinions, findings, con-
clusions, or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the NSF or the United States Government.

11

https://doi.org/10.5281/zenodo.8247917
https://doi.org/10.5281/zenodo.8247917

REFERENCES

[1] A. Stanoev, “Contiki-NG: The OS for Next Generation IoT Devices.”
[Online]. Available: https://github.com/contiki-ng/contiki-ng/wiki/Home

[2] FreeRTOS, “FreeRTOS - Market leading RTOS (Real Time Operating
System) for embedded systems with Internet of Things extensions.”
[Online]. Available: https://www.freertos.org/index.html

[3] R. Yu, F. Del Nin, Y. Zhang, S. Huang, P. Kaliyar, S. Zakto, M. Conti,
G. Portokalidis, and J. Xu, “Building Embedded Systems Like It’s 1996,”
arXiv, Tech. Rep. arXiv:2203.06834, Mar. 2022, arXiv:2203.06834 [cs]
type: article. [Online]. Available: http://arxiv.org/abs/2203.06834

[4] L. H. Newman, “An Operating System Bug Exposes 200 Million
Critical Devices,” Wired, section: tags. [Online]. Available: https:
//www.wired.com/story/vxworks-vulnerabilities-urgent11/

[5] “AMNESIA:33.” [Online]. Available: https://www.forescout.com/
research-labs/amnesia33/

[6] Forescout, “Project Memoria.” [Online]. Available: https://www.
forescout.com/research-labs/project-memoria/

[7] L. Lockefeer, D. M. Williams, and W. Fokkink, “Formal specification
and verification of TCP extended with the Window Scale Option,”
Science of Computer Programming, vol. 118, pp. 3–23, Mar. 2016.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167642315001835

[8] M. A. S. Smith, “Formal Verification of TCP and T/TCP.”
[9] M. Musuvathi and D. R. Engler, “Model Checking Large Network

Protocol Implementations.”
[10] A. Zaostrovnykh, S. Pirelli, R. Iyer, M. Rizzo, L. Pedrosa, K. Argyraki,

and G. Candea, “Verifying software network functions with no
verification expertise,” in Proceedings of the 27th ACM Symposium
on Operating Systems Principles, ser. SOSP ’19. New York, NY,
USA: Association for Computing Machinery, Oct. 2019, pp. 275–290.
[Online]. Available: https://dl.acm.org/doi/10.1145/3341301.3359647

[11] K. Zhang, D. Zhuo, A. Akella, and A. K. X. Wang, “Automated
Verification of Customizable Middlebox Properties with Gravel.”

[12] S. Pirelli, A. Valentukonytė, K. Argyraki, and G. Candea, “Automated
verification of network function binaries,” in 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 22), 2022.

[13] Q. A. Chen, Z. Qian, Y. J. Jia, Y. Shao, and Z. M. Mao, “Static
Detection of Packet Injection Vulnerabilities: A Case for Identifying
Attacker-controlled Implicit Information Leaks,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’15. New York, NY, USA: Association for
Computing Machinery, Oct. 2015, pp. 388–400. [Online]. Available:
https://dl.acm.org/doi/10.1145/2810103.2813643

[14] H. Zhang, W. Chen, Y. Hao, G. Li, Y. Zhai, X. Zou, and Z. Qian,
“Statically Discovering High-Order Taint Style Vulnerabilities in OS
Kernels,” in Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security (CCS). Association for
Computing Machinery, Nov. 2021, pp. 811–824. [Online]. Available:
https://dl.acm.org/doi/10.1145/3460120.3484798

[15] N. Kothari, R. Mahajan, T. Millstein, R. Govindan, and M. Musuvathi,
“Finding protocol manipulation attacks,” in Proceedings of the ACM
SIGCOMM 2011 conference, ser. SIGCOMM ’11. New York, NY,
USA: Association for Computing Machinery, Aug. 2011, pp. 26–37.
[Online]. Available: https://dl.acm.org/doi/10.1145/2018436.2018440

[16] R. Chang, G. Jiang, F. Ivancic, S. Sankaranarayanan, and V. Shmatikov,
“Inputs of Coma: Static Detection of Denial-of-Service Vulnerabilities,”
in 2009 22nd IEEE Computer Security Foundations Symposium, Jul.
2009, pp. 186–199, iSSN: 2377-5459.

[17] L. Pedrosa, A. Fogel, N. Kothari, R. Govindan, R. Mahajan, and
T. Millstein, “Analyzing protocol implementations for interoperability,”
in Proceedings of the 12th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI’15. USA: USENIX Association,
May 2015, pp. 485–498.

[18] V.-T. Pham, M. Böhme, and A. Roychoudhury, “AFLNET: A Greybox
Fuzzer for Network Protocols,” in 2020 IEEE 13th International Confer-
ence on Software Testing, Validation and Verification (ICST), Oct. 2020,
pp. 460–465, iSSN: 2159-4848.

[19] R. Natella, “StateAFL: Greybox fuzzing for stateful network servers,”
Empirical Software Engineering, vol. 27, no. 7, Dec. 2022. [Online].
Available: https://doi.org/10.1007/s10664-022-10233-3

[20] A. Andronidis and C. Cadar, “SnapFuzz: An Efficient Fuzzing Frame-
work for Network Applications,” in Proceedings of the 31st ACM

SIGSOFT International Symposium on Software Testing and Analysis,
Jul. 2022.

[21] Y.-H. Zou, J.-J. Bai, J. Zhou, J. Tan, C. Qin, and S.-M. Hu,
“{TCP-Fuzz}: Detecting Memory and Semantic Bugs in {TCP}
Stacks with Fuzzing,” 2021, pp. 489–502. [Online]. Available:
https://www.usenix.org/conference/atc21/presentation/zou

[22] C. Poncelet, K. Sagonas, and N. Tsiftes, “So Many Fuzzers, So Little
Time: Experience from Evaluating Fuzzers on the Contiki-NG Network
(Hay)Stack,” 2022. [Online]. Available: http://urn.kb.se/resolve?urn=urn:
nbn:se:ri:diva-61138

[23] D. Anandayuvaraj, P. Thulluri, J. Figueroa, H. Shandilya, and J. C.
Davis, “Towards a failure-aware SDLC for internet of things,” 2022.
[Online]. Available: https://arxiv.org/abs/2206.13562

[24] D. A. Norman, “Commentary: Human error and the design of computer
systems,” Communications of the ACM, vol. 33, no. 1, pp. 4–7, 1990,
publisher: Association for Computing Machinery, Inc.

[25] C. Johnson, “Software Support for Incident Reporting Systems in Safety-
Critical Applications,” in Proceedings of the 19th International Confer-
ence on Computer Safety, Reliability and Security, ser. SAFECOMP ’00.
Berlin, Heidelberg: Springer-Verlag, Oct. 2000, pp. 96–106.

[26] G. Oikonomou, S. Duquennoy, A. Elsts, J. Eriksson, Y. Tanaka,
and N. Tsiftes, “The Contiki-NG open source operating system
for next generation IoT devices,” SoftwareX, vol. 18, Jun. 2022,
publisher: Elsevier. [Online]. Available: https://www.softxjournal.com/
article/S2352-7110(22)00062-0/fulltext

[27] lwIP, “lwIP: Overview.” [Online]. Available: https://www.nongnu.org/
lwip/2 1 x/index.html

[28] PicoTCP, “picotcp.” [Online]. Available: http://picotcp.altran.be/
[29] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,

P. Wagle, Q. Zhang, and H. Hinton, “Stackguard: automatic adaptive
detection and prevention of buffer-overflow attacks.” in USENIX security
symposium, vol. 98. San Antonio, TX, 1998, pp. 63–78.

[30] “Defeating Solar Designer’s Non-executable Stack Patch.”
[Online]. Available: https://insecure.org/sploits/non-executable.stack.
problems.html

[31] A. Abbasi, J. Wetzels, T. Holz, and S. Etalle, “Challenges in Designing
Exploit Mitigations for Deeply Embedded Systems,” in 2019 IEEE
European Symposium on Security and Privacy (EuroS P), Jun. 2019,
pp. 31–46.

[32] IEEE, “IEEE Standard for IEEE Information Technology - Portable
Operating System Interface (POSIX(TM)),” IEEE Std 1003.1-2001
(Revision of IEEE Std 1003.1-1996 and IEEE Std 1003.2-1992), pp.
1–3678, Dec. 2001, conference Name: IEEE Std 1003.1-2001 (Revision
of IEEE Std 1003.1-1996 and IEEE Std 1003.2-1992).

[33] Robert T. Braden, “Requirements for Internet Hosts - Application and
Support,” Internet Engineering Task Force, Request for Comments
RFC 1123, Oct. 1989, num Pages: 98. [Online]. Available: https:
//datatracker.ietf.org/doc/rfc1123

[34] R. T. Braden, “Requirements for Internet Hosts - Communication
Layers,” Internet Engineering Task Force, Request for Comments
RFC 1122, Oct. 1989, num Pages: 116. [Online]. Available:
https://datatracker.ietf.org/doc/rfc1122

[35] G. Fraser and A. Arcuri, “EvoSuite: automatic test suite generation for
object-oriented software,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of
software engineering. Association for Computing Machinery, 2011.
[Online]. Available: https://dl.acm.org/doi/10.1145/2025113.2025179

[36] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-Directed
Random Test Generation,” in 29th International Conference on Software
Engineering (ICSE’07), May 2007, pp. 75–84, iSSN: 1558-1225.

[37] D. Beyer, “Advances in Automatic Software Testing: Test-Comp 2022,”
in International Conference on Fundamental Approaches to Software
Engineering. Berlin, Heidelberg: Springer-Verlag, Apr. 2022, pp. 321–
335. [Online]. Available: https://doi.org/10.1007/978-3-030-99429-7 18

[38] D. Serra, G. Grano, F. Palomba, F. Ferrucci, H. C. Gall, and A. Bacchelli,
“On the Effectiveness of Manual and Automatic Unit Test Generation:
Ten Years Later,” in 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR), May 2019, pp. 121–125, iSSN:
2574-3864.

[39] N. Cardwell, Y. Cheng, L. Brakmo, M. Mathis, B. Raghavan,
N. Dukkipati, H.-k. J. Chu, A. Terzis, and T. Herbert, “packetdrill:
Scriptable Network Stack Testing, from Sockets to Packets,” 2013, pp.
213–218. [Online]. Available: https://www.usenix.org/conference/atc13/
technical-sessions/presentation/cardwell

12

https://github.com/contiki-ng/contiki-ng/wiki/Home
https://www.freertos.org/index.html
http://arxiv.org/abs/2203.06834
https://www.wired.com/story/vxworks-vulnerabilities-urgent11/
https://www.wired.com/story/vxworks-vulnerabilities-urgent11/
https://www.forescout.com/research-labs/amnesia33/
https://www.forescout.com/research-labs/amnesia33/
https://www.forescout.com/research-labs/project-memoria/
https://www.forescout.com/research-labs/project-memoria/
https://www.sciencedirect.com/science/article/pii/S0167642315001835
https://www.sciencedirect.com/science/article/pii/S0167642315001835
https://dl.acm.org/doi/10.1145/3341301.3359647
https://dl.acm.org/doi/10.1145/2810103.2813643
https://dl.acm.org/doi/10.1145/3460120.3484798
https://dl.acm.org/doi/10.1145/2018436.2018440
https://doi.org/10.1007/s10664-022-10233-3
https://www.usenix.org/conference/atc21/presentation/zou
http://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-61138
http://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-61138
https://arxiv.org/abs/2206.13562
https://www.softxjournal.com/article/S2352-7110(22)00062-0/fulltext
https://www.softxjournal.com/article/S2352-7110(22)00062-0/fulltext
https://www.nongnu.org/lwip/2_1_x/index.html
https://www.nongnu.org/lwip/2_1_x/index.html
http://picotcp.altran.be/
https://insecure.org/sploits/non-executable.stack.problems.html
https://insecure.org/sploits/non-executable.stack.problems.html
https://datatracker.ietf.org/doc/rfc1123
https://datatracker.ietf.org/doc/rfc1123
https://datatracker.ietf.org/doc/rfc1122
https://dl.acm.org/doi/10.1145/2025113.2025179
https://doi.org/10.1007/978-3-030-99429-7_18
https://www.usenix.org/conference/atc13/technical-sessions/presentation/cardwell
https://www.usenix.org/conference/atc13/technical-sessions/presentation/cardwell

[40] I. InterWorking Labs, “Network testing products,” 2022. [Online].
Available: https://www.iwl.com/products

[41] N. K. Gopalakrishna, D. Anandayuvaraj, A. Detti, F. L. Bland, S. Ra-
haman, and J. C. Davis, “”If security is required”: Engineering and
Security Practices for Machine Learning-based IoT Devices,” in 4th
International Workshop on Software Engineering Research & Practices
for the Internet of Things (SERP4IoT), 2022, p. 8.

[42] Microsoft, “Project Everest.” [Online]. Avail-
able: https://www.microsoft.com/en-us/research/project/
project-everest-verified-secure-implementations-https-ecosystem/

[43] N. Chong and B. Jacobs, “Formally verifying freer-
tos’ interprocess communication mechanism,” in Em-
bedded World Exhibition & Conference 2021, 2021.
[Online]. Available: https://www.amazon.science/publications/
formally-verifying-freertos-interprocess-communication-mechanism

[44] P. Fonseca, K. Zhang, X. Wang, and A. Krishnamurthy, “An Empirical
Study on the Correctness of Formally Verified Distributed Systems,” in
Proceedings of the Twelfth European Conference on Computer Systems.
Belgrade Serbia: ACM, Apr. 2017, pp. 328–343. [Online]. Available:
https://dl.acm.org/doi/10.1145/3064176.3064183

[45] V. J. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and
M. Woo, “The art, science, and engineering of fuzzing: A survey,” IEEE
Transactions on Software Engineering, vol. 47, no. 11, pp. 2312–2331,
2019.

[46] B. Liu, G. Meng, W. Zou, Q. Gong, F. Li, M. Lin, D. Sun, W. Huo,
and C. Zhang, “A Large-Scale Empirical Study on Vulnerability Distri-
bution within Projects and the Lessons Learned,” in IEEE/ACM 42nd
International Conference on Software Engineering (ICSE), 2020.

[47] M. Jimenez, M. Papadakis, and Y. L. Traon, “An Empirical Analysis
of Vulnerabilities in OpenSSL and the Linux Kernel,” in 2016 23rd
Asia-Pacific Software Engineering Conference (APSEC), Dec. 2016, pp.
105–112, iSSN: 1530-1362.

[48] M. Cai, H. Huang, and J. Huang, “Understanding Security
Vulnerabilities in File Systems,” in Proceedings of the 10th ACM
SIGOPS Asia-Pacific Workshop on Systems, ser. APSys ’19. New
York, NY, USA: Association for Computing Machinery, Aug. 2019,
pp. 8–15. [Online]. Available: https://doi.org/10.1145/3343737.3343753

[49] A. Al-Boghdady, K. Wassif, and M. El-Ramly, “The Presence, Trends,
and Causes of Security Vulnerabilities in Operating Systems of IoT’s
Low-End Devices,” Sensors, vol. 21, no. 7, p. 2329, Jan. 2021, number:
7 Publisher: Multidisciplinary Digital Publishing Institute. [Online].
Available: https://www.mdpi.com/1424-8220/21/7/2329

[50] J. McBride, B. Arief, and J. Hernandez-Castro, “Security Analysis of
Contiki IoT Operating System,” in Proceedings of the 2018 International
Conference on Embedded Wireless Systems and Networks, ser. EWSN
’18. USA: Junction Publishing, Feb. 2018, pp. 278–283.

[51] J. Malik and F. Pastore, “An empirical study of vulnerabilities in
edge frameworks to support security testing improvement,” Empirical
Software Engineering, vol. 28, no. 4, p. 99, 2023.

[52] Zimperium Labs, “FreeRTOS TCP/IP Stack Vulnerabilities -
The Details.” [Online]. Available: https://www.zimperium.com/blog/
freertos-tcpip-stack-vulnerabilities-details/

[53] A. Danial, “cloc: Count lines of code,” https://github.com/AlDanial/cloc,
2021, accessed: May 3, 2023.

[54] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, “Operating Systems
for Low-End Devices in the Internet of Things: A Survey,” IEEE Internet
of Things Journal, vol. 3, no. 5, pp. 720–734, Oct. 2016, conference
Name: IEEE Internet of Things Journal.

[55] M. Silva, D. Cerdeira, S. Pinto, and T. Gomes, “Operating Systems
for Internet of Things Low-End Devices: Analysis and Benchmarking,”
IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10 375–10 383, Dec.
2019, conference Name: IEEE Internet of Things Journal.

[56] “National vulnerability database,” https://nvd.nist.gov/, accessed: May 3,
2023.

[57] P. Amusuo, A. Sharma, S. R. Rao, A. Vincent, and J. C. Davis, “Re-
flections on software failure analysis,” in ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering — Ideas, Visions, and Reflections track (ESEC/FSE-IVR),
2022.

[58] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[59] J. R. Landis and G. G. Koch, “An application of hierarchical kappa-
type statistics in the assessment of majority agreement among multiple

observers,” Biometrics. Journal of the International Biometric Society,
pp. 363–374, 1977, publisher: JSTOR.

[60] “Common weakness enumeration,” https://cwe.mitre.org/, accessed:
May 3, 2023.

[61] Contiki, “An introduction to cooja,” https://github.com/contiki-os/
contiki/wiki/An-Introduction-to-Cooja, 2021, accessed: May 3, 2023.

[62] K. Serebryany and D. Bruening, “Addresssanitizer: A fast address
sanity checker,” in Proceedings of the 2012 USENIX Annual Technical
Conference. USENIX Association, 2012, pp. 309–318.

[63] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
“What you corrupt is not what you crash: Challenges in fuzzing
embedded devices.” in NDSS, 2018.

[64] “Universal TUN/TAP device driver — The Linux Kernel documenta-
tion.” [Online]. Available: https://docs.kernel.org/networking/tuntap.html

[65] J. Srinivasan, S. R. Tanksalkar, P. C. Amusuo, J. C. Davis, and
A. Machiry, “Towards rehosting embedded applications as linux ap-
plications,” in 53rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2023.

[66] M. Shen, J. C. Davis, and A. Machiry, “Towards automated identification
of layering violations in embedded applications,” in 2023 ACM Interna-
tional Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES). ACM, 2023.

[67] C. Poncelet, K. Sagonas, and N. Tsiftes, “So Many Fuzzers, So Little
Time: Experience from Evaluating Fuzzers on the Contiki-NG Network
(Hay)Stack,” in Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering. Association for
Computing Machinery, Jan. 2023, pp. 1–12. [Online]. Available:
https://dl.acm.org/doi/10.1145/3551349.3556946

[68] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and R. Beyah,
“Mopt: Optimized mutation scheduling for fuzzers.” in USENIX Security
Symposium, 2019, pp. 1949–1966.

[69] M. Cho, S. Kim, and T. Kwon, “Intriguer: Field-level constraint solving
for hybrid fuzzing,” in Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2019, pp. 515–530.

[70] S. Poeplau and A. Francillon, “Symbolic execution with symcc: Don’t
interpret, compile!” in Proceedings of the 29th USENIX Conference on
Security Symposium, 2020, pp. 181–198.

[71] A. S. Ami, K. Moran, D. Poshyvanyk, and A. Nadkarni, “”False negative
– that one is going to kill you”: Understanding Industry Perspectives of
Static Analysis based Security Testing,” Aug. 2023, arXiv:2307.16325
[cs]. [Online]. Available: http://arxiv.org/abs/2307.16325

[72] “CodeQL.” [Online]. Available: https://codeql.github.com/
[73] D. Anandayuvaraj and J. C. Davis, “Reflecting on Recurring Failures in

IoT Development,” in Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering. Association for
Computing Machinery, Jan. 2023, pp. 1–5. [Online]. Available:
https://dl.acm.org/doi/10.1145/3551349.3559545

[74] D. Anandayuvaraj, P. Thulluri, J. Figueroa, H. Shandilya, and J. C.
Davis, “Incorporating Failure Knowledge into Design Decisions for IoT
Systems: A Controlled Experiment on Novices,” in Software Engineer-
ing Research & Practices for the Internet of Things (SERP4IoT), 2023.

[75] C. Bodei, S. Chessa, and L. Galletta, “Measuring security in IoT
communications,” Theoretical Computer Science, vol. 764, pp. 100–124,
Apr. 2019. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0304397518307205

[76] W. Toussaint and A. Y. Ding, “Machine Learning Systems in the IoT:
Trustworthiness Trade-offs for Edge Intelligence,” in 2020 IEEE Second
International Conference on Cognitive Machine Intelligence (CogMI),
Oct. 2020, pp. 177–184.

[77] “More about AFL — AFL 2.53b documentation.” [Online]. Available:
https://afl-1.readthedocs.io/en/latest/about afl.html

[78] “CRIU.” [Online]. Available: https://criu.org/Main Page
[79] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,

J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G. Vigna,
“Driller: Augmenting Fuzzing Through Selective Symbolic Execution,”
in Proceedings 2016 Network and Distributed System Security
Symposium. San Diego, CA: Internet Society, 2016. [Online]. Avail-
able: https://www.ndss-symposium.org/wp-content/uploads/2017/09/
driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf

[80] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “{QSYM} : A Practical
Concolic Execution Engine Tailored for Hybrid Fuzzing,” 2018,
pp. 745–761. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity18/presentation/yun

13

https://www.iwl.com/products
https://www.microsoft.com/en-us/research/project/project-everest-verified-secure-implementations-https-ecosystem/
https://www.microsoft.com/en-us/research/project/project-everest-verified-secure-implementations-https-ecosystem/
https://www.amazon.science/publications/formally-verifying-freertos-interprocess-communication-mechanism
https://www.amazon.science/publications/formally-verifying-freertos-interprocess-communication-mechanism
https://dl.acm.org/doi/10.1145/3064176.3064183
https://doi.org/10.1145/3343737.3343753
https://www.mdpi.com/1424-8220/21/7/2329
https://www.zimperium.com/blog/freertos-tcpip-stack-vulnerabilities-details/
https://www.zimperium.com/blog/freertos-tcpip-stack-vulnerabilities-details/
https://github.com/AlDanial/cloc
https://nvd.nist.gov/
https://cwe.mitre.org/
https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
https://docs.kernel.org/networking/tuntap.html
https://dl.acm.org/doi/10.1145/3551349.3556946
http://arxiv.org/abs/2307.16325
https://codeql.github.com/
https://dl.acm.org/doi/10.1145/3551349.3559545
https://www.sciencedirect.com/science/article/pii/S0304397518307205
https://www.sciencedirect.com/science/article/pii/S0304397518307205
https://afl-1.readthedocs.io/en/latest/about_afl.html
https://criu.org/Main_Page
https://www.ndss-symposium.org/wp-content/uploads/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://www.usenix.org/conference/usenixsecurity18/presentation/yun

	Introduction
	Background
	Embedded Network Stacks (ENS)
	Internet Protocols and Network Packets
	ENS Vulnerabilities

	Related Work
	Knowledge Gaps and Research Questions
	ENS Vulnerabilities and Testing (RQ1-3)
	Methodology
	Repository Selection
	Data Collection
	Data Analysis

	RQ1: Vulnerability Characteristics
	Vulnerability Types
	Implementation Root Causes
	Vulnerable Layers

	RQ2: Packet Sequences That Trigger CVEs
	Properties of the vulnerability-triggering packets (pk)
	Properties of the packet sequence prefix

	RQ3: Testing Suite Characteristic

	EmNetTest: Design and Implementation
	Design Requirements
	Design
	Custom Address Sanitization with Dynamic Address Poisoning (DAP)
	(Ordered) Systematic Packet Generation
	Stateful

	Implementation
	Portability
	PacketDrill++
	Packet Injection
	Parallelizing test execution
	Deduplicating vulnerabilities
	Linux versions of ENS

	RQ4: Systematic Testing with EmNetTest
	Experimental Setup
	Embedded Network Stack Selection
	ENSBench: Vulnerability Dataset Contruction
	RQ4.1: Replicating Known Vulnerabilities
	RQ4.2: Discovering New Vulnerabilities
	RQ4.3: Performance Characteristics
	RQ4.4: Fuzzing Comparison

	Discussion
	Limitations and Threats to Validity
	Conclusion
	Data Availability
	Acknowledgements
	References

