
An Empirical Study on the Use of Static Analysis Tools in
Open Source Embedded Software
MINGJIE SHEN, Purdue University, USA
AKUL PILLAI, Purdue University, USA
BRIAN A. YUAN, Purdue University, USA
JAMES C. DAVIS, Purdue University, USA
ARAVIND MACHIRY, Purdue University, USA

Embedded software is used in safety-critical systems such as medical devices and autonomous vehicles, where
software defects comprising security vulnerabilities have severe consequences. Many embedded software
products incorporate Open-Source Embedded Software (EMBOSS), so it is important for EMBOSS engineers
to use appropriate mechanisms to avoid security vulnerabilities. One common defense against security
vulnerabilities is the use of static analysis, which can offer sound guarantees. While researchers have examined
the practices, challenges, and potential benefits of static analysis for many kinds of open-source software, these
observations have not been made for EMBOSS. There is little data to guide open-source software engineers
and regulators on the cost-benefit tradeoffs of applying (or mandating) static analysis in this context.

This paper performs the first study to understand the prevalence, challenges, and effectiveness of using Static
Application Security Testing (SAST) tools on EMBOSS repositories. We collect a corpus of 258 of the most
popular EMBOSS projects, representing 13 distinct categories such as real-time operating systems, network
stacks, and applications. To understand the current use of SAST tools on EMBOSS, we measured this corpus
and surveyed developers. To understand the challenges and effectiveness of using SAST tools on EMBOSS
projects, we applied these tools to the projects in our corpus. We report that almost none of these projects
(just 3%) use SAST tools beyond those baked into the compiler, and developers give rationales such as
ineffectiveness and false positives. In applying SAST tools ourselves, we show that minimal engineering effort
and project expertise are needed to apply many tools to a given EMBOSS project. GitHub’s CodeQL was
the most effective SAST tool — using its built-in security checks we found a total of 540 defects (with a false
positive rate of 23%) across the 258 projects, with 399 (74%) likely security vulnerabilities, including in projects
maintained by Microsoft, Amazon, and the Apache Foundation. EMBOSS engineers have confirmed 273 (51%)
of these defects, mainly by accepting our pull requests. Two CVEs were issued. In summary, we urge EMBOSS
engineers to adopt the current generation of SAST tools, which offer low false positive rates and are effective
at finding security-relevant defects.

1 INTRODUCTION
Our dependence on embedded devices (e.g., IoT devices) and consequently embedded software
has significantly increased. Embedded devices control many aspects of our lives, including our
homes [17], transportation [14], traffic management [99], and the distribution of vital resources
like food [95] and power [89]. The adoption of these devices has seen rapid and extensive growth,
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with an estimated count of over 50 billion devices [13]. Vulnerabilities in Embedded Software
(EmS) (enabling these devices) have far-reaching consequences [24, 109] due to the pervasive and
interconnected nature of these devices, as exemplified by the infamous Mirai botnet [81].
Open-source Software (OSS) plays an important role in EmS development [21, 45, 74]. Various

popular Open-Source Embedded Software (EMBOSS) exist, such as libraries and Real Time Operat-
ing Systems (RTOSes) [2]. For instance, FreeRTOS [19] and Zephyr [101], two of the most popular
and industry-endorsed RTOSes, are open-source. It is important to ensure that EMBOSS do not
contain any vulnerabilities and that suitable vulnerability detection techniques are used to secure
them.
The diversity of hardware platforms [86, 108], input mechanisms, and the lack of support for

sanitizers [11, 111] make it hard to apply dynamic analysis based vulnerability detection tech-
niques, such as fuzzing [78], to EMBOSS. On the other hand, static analysis vulnerability detection
techniques, i.e., Static Application Security Testing (SAST) tools, do not have such requirements.
Moreover, the latest State of The Practice (SoTP) tools, such as CodeQL [27] are shown to be
effective and can find serious security vulnerabilities in complex codebases [50]. Furthermore,
many of these SoTP tools can be easily used in the software engineering pipeline by integrating
into Continuous Integration (CI) Workflows, e.g., GitHub Workflows [66]. As we show in Section 3,
many critical OSS effectively use SAST tools in their CI Workflows. Furthermore, Chelf et al. [37]
showed that embedded software can greatly benefit from using SAST tools. However, the use and
effectiveness of SAST tools in EMBOSS is unknown.
In this paper, we perform the first systematic study on the use of SAST tools to detect security

vulnerabilities in EMBOSS. Specifically, we investigate three research questions:
• RQ1-Prevalence: Are SAST tools currently used in EMBOSS?
• RQ2-Challenges: Is there any difficulty in configuring SAST tools for EMBOSS?
• RQ3-Effectiveness: Can EMBOSS benefit from using SAST tools?

To answer these questions, we curated a corpus of 258 popular EMBOSS projects from GitHub.
We also identified a set of 12 SAST tools that can be readily integrated into these projects. We used
a combination of automated analysis of CI Workflows and developer surveys to understand the
prevalence of SAST tools usage. We used manual analysis and developer surveys to understand the
challenges in using SAST tools. Finally, we manually created exemplary SAST CI Workflows for
all EMBOSS projects. We used these Workflows to run a modified version of CodeQL (one of the
most effective SAST tools) on each project and analyzed the corresponding results.

To summarize our results: available SAST tools — specifically, CodeQL — are easy to configure
and substantially outperform EMBOSS developers’ common practice, which is the compiler’s
warnings. We identified that only 10 (4%) projects use SAST tools as part of their CI Workflows.
Furthermore, our developer survey indicates that despite developers being aware of SAST tools,
most developers do not use them on EMBOSS projects. Most developers claim to use strict compiler
warnings (i.e.,-Wall, -Wextra and -Werror), but they are less effective compared to SoTP SAST tools,
as we show in Section 7.4. We identified that CodeQL, one of the most effective SoTP SAST tools,
cannot handle diverse build systems of EMBOSS repositories and consequently fails to run on many
of them. However, wewere able to fix this withminimal engineering effort and created CIWorkflows
enabling the execution of CodeQL on EMBOSS repositories.We found a total of 540 defects, with 399
(74%) being security vulnerabilities, demonstrating the need to use SAST tools on EMBOSS projects.

Our contributions are:
• We performed the first study to understand the prevalence and benefit of using SAST tools
in EMBOSS. We observed that current techniques used by developers (compiler warnings)
are ineffective compared to a SoTP SAST tool.
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• As part of our study, we curated a list of 258 EMBOSS projects and created exemplary GitHub
Workflows – encapsulating all the necessary compilation steps – enabling execution of SAST
tools. This is the first large-scale embedded software dataset with the necessary compilation
infrastructure.

• We executed CodeQL on our EMBOSS dataset using the created Workflows. We identified a
total of 540 defects (399 (74%) security vulnerabilities) across all projects, including projects
maintained by reputed groups such as Apache, Microsoft, and Amazon. We have reported all
these defects and raised pull requests. The developers have already confirmed 273 (51%) of
these defects, mainly by accepting our pull requests.

• We open-source all our datasets and GitHub Workflows, enabling future science.
Significance for software engineering: Empirical software engineering research has a substantial

body of knowledge on open-source software, but has focused on IT or general-purpose software [23].
We present a large-scale evaluation of embedded open-source software, reporting on both the
effectiveness of SAST tools and on developers’ perceptions. Across 258 EMBOSS, the CodeQL SAST
tool finds hundreds of defects with modest per-repository configuration and a low false positive
rate. EMBOSS software developers can use this tool to easily improve software quality.

2 BACKGROUND
2.1 Embedded Software, RTOSes, and Open-Source
Embedded software is designed to run on embedded systems, ranging from industrial controllers [30]
to resource-constrained microcontroller-based IoT devices [17]. As mentioned in Section 1, these
devices control various aspects of our daily lives. Unlike regular computers, embedded devices
use specialized Real Time Operating Systems (RTOSes) designed for reduced-resource environ-
ments (e.g., real-time scheduling, low power consumption, low memory overhead). There are 31
different RTOSes [2], with the majority (26) of them being open-source and developed in unsafe
languages such as C/C++. Examples of RTOSes include RIOT, Contiki, FreeRTOS, and Azure RTOS.
Open-source Software (OSS) is an essential part of the software supply chain of embedded

systems. The inherent advantages of open-source software, such as long-term sustainability and
accessibility to source code for debugging purposes, have been acknowledged and appreciated in
the embedded software industry [73, 74]. Most of Open-Source Embedded Software (EMBOSS) is
in C/C++, and studies [15, 16] show that many EMBOSS use many unsafe statements.

2.2 SAST Tools
Embedded software, with its hardware-coupled nature [86] and the lack of necessary emulation
support [44], makes it hard to use dynamic analysis techniques in a scalable manner. Static Ap-
plication Security Testing (SAST) tools are specially designed static analysis techniques to find
security vulnerabilities effectively. They do not require execution support, making them attractive
to use on embedded software. Furthermore, as we show in Table 2, many SoTP SAST tools have
the necessary plugins to be easily integrated into CI pipelines.

2.2.1 Availability. There are many open-source and commercial SAST tools. The open-source tools
vary in the underlying techniques and corresponding guarantees. There are high-assurance tools,
such as IKOS [32], that use abstract interpretation and provide soundness guarantees. However,
these tools must be properly configured with suitable abstract domains to avoid false positives — a
cumbersome process requiring a formal background. On the other hand, there are best-effort pattern-
based tools, such as cppcheck [82] and flawfinder [106], which can be readily used but do not provide
any guarantees. Several works [35, 49, 72, 85] evaluate these tools on non-embedded software and
show that they vary in precision, recall, and usability. There are also many commercial SAST tools.
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Coverity is considered state-of-the-art and allows developers to customize the tool to reduce false
positives [61]. Other notable tools include Fortify [90], Checkmarx [36], and Veracode [105].

2.2.2 CodeQL. This is a recent SAST tool created andmaintained byMicrosoft. CodeQL represents
code as a relational database and uses relational queries to find defects in the given codebase. It
has several static analysis capabilities, such as control flow analysis, data flow analysis, and taint
tracking to detect security issues [27]. Furthermore, CodeQL has built-in queries for common
security issues (i.e., Common Weakness Enumerations (CWEs)). Security analysts and developers
have used CodeQL to find thousands of security vulnerabilities in large codebases, including the
Linux kernel [4, 5, 50].

2.3 Continuous Integration (CI) Workflows
Continuous Integration (CI) pipelines or Workflows [60] have become ubiquitous in the software
development lifecycle. They automate various software development processes, such as building,
testing, and deploying code. The GitHub CI with its close integration with GitHub infrastructure,
is the most popular CI framework for the projects hosted on GitHub [58]. GitHub CI supports Ac-
tions, i.e., modules or plugins that enable easy development of Workflows. More than 19K actions
are available on GitHub Marketplace [56]. For instance, one can use actions/cmake-actionAction [83]
to build a cmake project.

Several works [29, 79, 80] show that CI Workflows provide a perfect place to run SAST tools as
they can be easily integrated into the development pipeline. Furthermore, there are several GitHub
Actions (Table 2) that enable running various SAST tools, including CodeQL, as part of a GitHub
Workflow.

3 MOTIVATION
Most embedded software are developed in unsafe languages, i.e., C/C++. Many works [62, 87, 93, 97]
emphasize the importance of using SAST tools on software projects, especially those using unsafe
languages such as C/C++. Many security and government organizations [1, 6] also recommend the
use of SAST tools. Many software engineering tasks are being automated in CI pipelines, which
provide an ideal place to use SAST tools. Our analysis shows that 958 (19%) of top 5K critical and
extremely critical OSS projects (according to OSSF criticality score explained in Section 4.1.3) on
GitHub use one or more SAST tools as part of their CI pipelines, i.e., GitHub Workflows.
It is important to ensure that SAST tools are also used in EMBOSS. Many effective SAST tools

require compilation of the underlying software and assume certain coding idioms (e.g., use of
standard libraries). These tools are often evaluated [35, 49, 72, 85] on traditional or non-embedded
software. However, embedded software differs [108] from traditional software in design, library
usage, organization, build system, and toolchains. It is unclear how challenging it is to use exist-
ing SAST tools and their effectiveness on EMBOSS. A decade ago, Torri et al. [102] surveyed ten
different free/open-source SAST tools and evaluated their use on five embedded applications. Their
results found that the tools present widely different results, and most are not ready to be applied to
embedded systems. Notably, numerous modifications were required to the source code and needed
to deal with diverse build processes. However, no work exists to understand the prevalence and
effectiveness of SAST tools in EMBOSS at scale.

4 STUDY METHODOLOGY
Our study addresses three research questions:

• RQ1-Prevalence (Section 5): Are SAST tools currently used in EMBOSS?
• RQ2-Challenges (Section 6): Is there any difficulty in configuring SAST for EMBOSS?
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• RQ3-Effectiveness (Section 7): Can EMBOSS benefit from using SAST tools?
We use mixed-methods study, systematic analysis, and large-scale evaluation to investigate these

questions. We start with details of our data collection methodology and tool selection. Then, we
present the methodology, results, and analysis for each research question in turn.

4.1 Embedded Software Dataset
We aim to collect a set of representative and popular EMBOSS. Embedded systems are usually
powered by an RTOS, which provides the necessary library and scheduling support for various ap-
plication components. To collect a representative EMBOSS dataset, we use a two-pronged approach
as shown in Figure 1.

Keyword: "embedded" &&
fork=false &&

archived=false &&
language=C,C++ &&

sort=stars

osrtos.com

On GitHub &&
 stars

Filters

Filters

Embedded Software Dataset
(258 distinct repos)

Top 250 repos
32 repos

Manual filter:
remove non-embedded repos

238 repos

Fig. 1. Our two-pronged approach to col-
lecting embedded software dataset.

4.1.1 GitHub Crawling. We searched (on Apr 8, 2023)
for popular embedded software on GitHub. Specifically,
we collected original (i.e., non-forked), active (i.e., non-
archived) C/C++ embedded software. Figure 1 shows
the exact filters for our search. We sorted the resulting
repositories according to their popularity (i.e., number
of stars) and collected the top 250. Also, all these reposi-
tories have more than 100 stars, indicating their popular-
ity. We manually checked each repository to filter false
positives by removing non-embedded repositories. For
instance, we filtered out a machine learning project that
also contained the word “embedded” in its keywords.
In total, this resulted in 238 repositories.

4.1.2 Well-Known Sources. We collected RTOSes from osrtos.
com [2], whichmaintains the list of all open-source RTOSes released to date. Specifically, we selected
those available on GitHub and with more than 100 stars. This resulted in a total of 32 repositories.

4.1.3 Summary. We combined the repositories and de-duplicated them, resulting in a total of
258 unique EMBOSS repositories. Table 1 shows the summary of all repositories along with their
fine-grained categorization (performed manually). Appendix E in our extended report [26] shows
Source Lines of Code (SLOC) statistics of these repositories. Most repositories are reasonably large,
with a median ranging from 10K - 100K SLOC, which agrees with numbers published in other
studies [98].

Measuring Importance of Software in theDatasetUsing theOSSFCriticality Score TheOpen
Source Security Foundation (OSSF) organization [46] created a mechanism to compute a criticality
score for GitHub repositories. This score is not commonly used in the empirical software engi-
neering literature, but it is receiving attention in practice [40, 75] because it is useful for security
analysts scanning large datasets to triage the security vulnerabilities. Since SAST tools are often
used for this purpose, we define the OSSF criticality score here.
The OSSF criticality score [25] of a repository is a number ranging from 0.0 - 1.0 intended to

measure the importance of a repository. The score is computed through a formula that incorporates
measures of popularity, dependents, activity, and other attributes. A score 𝑠 from 0.0 ≤ 𝑠 < 0.2,
0.2 ≤ 𝑠 < 0.4, 0.4 ≤ 𝑠 < 0.6, 0.6 ≤ 𝑠 < 0.9, 0.9 ≤ 𝑠 indicates low, medium, high, critical, extremely
critical severities, respectively. For instance, The Swift language frontend (with 2.4K stars) [10]
and contiki-os (an RTOS with 3.6K stars) [7] have criticality scores of 0.51, indicating high severity
projects. The Linux kernel (with 157K stars) [103] has a criticality score of 0.88, indicating a critical
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project. The Node.js runtime has (with 97.6K stars) [8] has a score of 0.99, indicating an extremely
critical project.
In our EMBOSS dataset, most of the 13 categories have projects with a median criticality score

ranging from 0.4-0.5, indicating projects of considerable importance. The box plot of OSSF criticality
score (Section 4.1.3) for EMBOSS in each category is in Appendix E of our extended report [26].

Table 1. Categorization of repositories in our EMBOSS dataset. Total: Medians across corpus, not by category.

Median Median Median
Category # Repos Example Repo GH stars SLOC Crit. Score

Hardware access library (HAL) 18 grbl 303.5 98,502 0.44
Device drivers (DD) 10 TinyUSB 452 20,078 0.41
Network (NET) 54 contik-ng 314 36,345 0.46
Database access libraries (DAL) 8 tiny SQL 659 26,977 0.39
File systems (FS) 5 littlefs 401 11,195 0.49
Parsing utilities (PAR) 10 json library, nanopd 313.5 2,547 0.41
Language support (LS) 33 micropython 479 33,389 0.42
UI utilities (UI) 14 flutterpi 584.5 56,712 0.46
Embedded applications (APP) 32 Infinitime 508 22,662.5 0.39
OSes (OS) 42 FreeRTOS, Zephyr 727.5 409,667.5 0.47
Memory Management Library (MML) 4 tinyobjloader-c 242.5 6,205.5 0.34
Other General Purpose Library

for Embedded Use (GPL) 22 tinyprintf 391 12,742.5 0.35
Other (OT) 6 368.5 94,805 0.43

Total 258 406.5 33545 0.43

4.2 Usable SAST
Our goal is to find SAST tools that can be readily used on the collected GitHub repositories. Given
that GitHub Actions are expected to be stable, easy to use, and can be seamlessly integrated into
repositories, we used GitHub Marketplace and found GitHub Actions designed for SAST purposes. 1
We manually filtered out pre-release Actions due to their instability and/or lack of documentation.
There were 6 commercial SAST tools, which we omitted as they require purchases of licenses or
subscriptions and place restrictions on scientific publications. Furthermore, for individuals, small
teams, or organizations with limited financial resources, the cost of commercial tools may be
prohibitive, making them less feasible compared to free or open-source alternatives.

4.2.1 Summary. This resulted in a total of 12 GitHub Actions using various SAST tools as shown
in Table 2. Nine of these Actions are plug-and-play, meaning they do not need any repository-
specific configuration. In other words, the steps to use the Action do not vary with the underlying
repository. For instance, the CodeQL Action (i.e., github/codeql-action [52]) is a plug-and-play
Action because every repository uses the same steps to use the Action, whereas the Frama-C/ ⌋
github-action-eva-sarif Action [47] requires developers to create a special Frama-C Makefile and
provide the path to it.

Effectiveness on C/C++ Juliet Test Suite [31]: Recent work [20] shows developers prefer
plug-and-play SAST tools as they do not need project-specific configuration. To measure baseline
effectiveness, we tested all plug-and-play tools on the Juliet Test Suite, a labeled dataset commonly
used to test SAST tools [88].
The last column of Table 2 shows the results. Except for CodeQL, all other tools either failed

or did not finish within 6 hours, which exceeds the maximum time allowed for a job by many CI
platforms, such as GitHub CI [57]. CodeQL took 40 minutes. The reasons for failure include 1)
1The query is category=security&type=actions&query=“C C++” and category=code-quality&type=actions&query=“C C++”.
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the Static Analysis Results Interchange Format (SARIF) file produced by the tool is invalid, and 2)
the argument list given to the SAST tool is too long. We checked the results of CodeQL and found
that it raised 11,101 warnings with a precision of 71% (7,904/11,101).2

Table 2. List of “usable” SAST GitHub Actions. These are GitHub Actions that perform SAST on C/C++
repositories, not including pre-release or commercial tools.

Name of GitHub Action Plug-and-play? Underlying tool(s) Juliet Test Suite results

From Well-established Organizations
github/codeql-action [52] Yes CodeQL 7,904 true positives
cpp-linter/cpp-linter-action [38] Yes clang-format, clang-tidy Not finished in 6 hours

trunk-io/trunk-action [104] No
(Bazel/CMake projects required)

clang-format, clang-tidy,
include-what-you-use,
pragma-once

N/A

Frama-C/github-action-eva-sarif [47] No
(Frama-C Makefile required) Frama-C N/A

From Independent Developers
IvanKuchin/SAST [63]
deep5050/flawfinder-action [91]
david-a-wheeler/flawfinder [106]

Yes flawfinder Error

Syndelis/cpp-linter-cached-action [68] Yes clang-format, clang-tidy N/A
deep5050/cppcheck-action [92]
Konstantin343/cppcheck-annotation-action [67] Yes cppcheck Not finished in 6 hours

JacobDomagala/StaticAnalysis [42] Yes cppcheck, clang-tidy Error

whisperity/codechecker-analysis-action [107] No
(Compilation DB required) clang N/A

5 RQ1: PREVALENCE OF SAST TOOLS
5.1 Method
In this research question, we plan to understand the prevalence of SAST tool usage in EMBOSS
repositories. In general, it is impossible to automatically identify whether an EMBOSS project
uses SAST tools because developers might use them out-of-band with no hints/indications in the
corresponding repository. e.g., developer might manually run a SAST tool before every release. We
perform a mixed-methods study by Workflow analysis and developer surveys to investigate this
research question.

5.2 Workflow Analysis
We noticed that 42% (109/258) of the EMBOSS repositories use GitHub Workflows to automate
building and testing the underlying codebase. As mentioned in Section 2.3, these Workflows are an
ideal place to use SAST tools. We performed an automated analysis of Workflows in each repository
to detect the usage of SAST tools. Specifically, for each Action used in a Workflow, we check if it
is a SAST tool by checking its category (Section 4.2). Next, we manually check every matching
Action to validate that it is indeed a SAST tool. We found that 248 of the repositories do not use any
SAST tool, 10 of them use free SAST tools, specifically, CodeQL, and none of them use commercial
SAST tools. Upon further analysis, we found that of the 10 repositories that use CodeQL, 7 are
mis-configured (use a deprecated Action version) while the other 3 configure it correctly.
Given the large number of repositories (248) and complexity of Workflows, it is impractical

to manually verify all the negative results, i.e., Workflows missing SAST tools. Instead, we per-
formed a random sampling of 20 Workflows and manually checked them. We found only two false
negatives, i.e., 10% false negative rate. Specifically, RIOT-OS/RIOT runs its own static test tools in a
2We count a reported flaw as a true positive if the reported location matches that of a ground truth bug.
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Use SAST
Tools?

Why?

Where?

Workflows

Out-of-band

clang static-analyzer

-Wall, -Wextra

clang-tidy

splint

-Wall, -Wextra

71% (10/14)

29% (4/14)

40% (4/10)

80% (8/10)

100% (8/8)

12.5% (1/8)

25% (1/4)

25% (1/4)

100% (4/4)

No

Yes

Lack of resources 25% (1/4)

1-3 
40% (4/10)

4-6 
20% (2/10)

>6 
40% (4/10)

Years working on the project

1-3 
25% (1/4)

4-6 
50% (2/4)

>6 
25% (1/4)

Years working on the project

Use Regularly 
90% (9/10)

Aware 
10% (1/10)

SAST Tool Experience

SAST Tool Experience
Un Aware 
25% (1/4)

Use Regularly 
25% (1/4)

Aware 
50% (2/4)

Why not in
Workflows?

No time.

Wasn't aware.

50% (2/4)
100% (2/2)

50% (1/2)

Exclusively
out-of-band

Low security impact 75% (3/4)

Fig. 2. Summary of our developer survey on the use of SAST tools.

Docker container through Workflows and InfiniTimeOrg/InfiniTime runs clang-tidy in a script. Our
automatic analysis failed to detect them because we did not parse the contents of the scripts used
in Workflows.

5.3 Developer Survey
We did an anonymous online survey with repositories’ maintainers to identify out-of-band usage
of SAST tools. First, we identified all the repositories for which we did not find any SAST tool usage
in their Workflows. For each of these repositories, we collected emails (from the public GitHub
profile) of users who merged recent pull requests and/or made commits directly to the repository
and sent them an email with the link to our survey. 3 We were able to find the maintainers’ email
only for 104 (out of 258) projects. Our study is approved by the Institutional Review Board (IRB)
under #2023-1062. The exact questions of the survey are listed in Appendix F of our extended
report [26]. We got responses for 14 projects (a 13% response rate, comparable with other works
that survey developers from GitHub). Figure 2 shows the summary of responses.

Use of SAST Tools. 71% (10/14) of the projects claim to use SAST tools, out of which 80% (8/10)
claim to be using them as part of their GitHub Workflows. This shows that developers are aware
of the possibility of using SAST tools in GitHub Workflows. However, only one project uses an
explicit SAST tool (i.e., clang static-analyzer). Our automated analysis (Section 5.2) did not find this
as the tool might be used as part of a script (e.g., ./test.sh). Since our analysis does not consider the
script, we failed to detect this. Many projects claim to use stringent compiler warnings (i.e.,-Wall,
-Wextra) instead of explicit SAST tools. Our automated analysis did not check for these flags, which
could be used as part of the build scripts. As we show in Section 7, stringent compiler warnings are
ineffective at detecting security vulnerabilities.

Only 40% (4/10) projects claim to use SAST tools out-of-band (i.e., outside of Workflows). Only 2 of
those 4 projects use SAST tools exclusively out-of-band (i.e., undetectable by looking at Workflows).
This suggests that analyzing Workflows is effective to identify the use of SAST tools.

3This is consistent with GitHub’s Acceptable Use policy [55]: profile emails are public information and the number of emails
sent was small enough to not qualify as mass spam.
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Not Using SAST Tools. 29% (4/14) of the projects do not use any SAST tools. Most of these
engineers (3 of the 4 projects) believe the security vulnerabilities in the corresponding projects
have a low impact. However, these projects have OSSF criticality scores of ∼0.3 (medium), ∼0.4
(high), and ∼0.6 (critical), respectively. These developers may underestimate the severity of security
issues, confirming previous studies [71, 110]. The developers of another project reported insufficient
resources (e.g., time). Unfortunately, this project is one of the most popular (7.3K stars) open-source
C++ library suites for embedded systems and is used in many critical embedded projects with OSSF
score of 0.67 (a critical project).

Comments on Using SAST Tools. A few (5) developers mentioned that the effectiveness of SAST
tools on embedded software is questionable and might result in many false positives.

5.4 Results
Our methods show that most of EMBOSS repositories do not use SAST tools. Specifically, our
Workflow analysis show that only 10 (4%) repositories use SAST tools as part of their CI Workflows.
Merely 3 (1%) repositories correctly use SAST tools, specifically CodeQL, a small number compared
to non-embedded repositories, where many similarly-popular repositories (958 of ∼5000 or 19%)
correctly use it (Section 3). Our developer survey also revealed similar results, wherein most
repositories do not use any explicit SAST tool. Furthermore, developers mentioned using strict
compiler warnings.

Finding 1: Most (97%) of the EMBOSS repositories do not use SAST tools.
Finding 2: Our survey indicates that many EMBOSS repositories rely on compiler warnings
instead of dedicated SAST tools.
Finding 3: Our survey shows that most developers are aware of CI Workflows and use them to
run their SAST tools.

6 RQ2: CHALLENGES IN EFFECTIVELY USING SAST TOOLS
In this research question, we want to know how challenging it is to effectively use SAST tools
on EMBOSS repositories. We focus on SoTP tools as listed in Table 2. In particular, we focus on
plug-and-play tools, which have a fixed set of steps for any repository.

6.1 Method
For each SAST tool, we picked the most popular Action implementing it. For instance, for flawfinder,
we picked david-a-wheeler/flawfinder— this repository has themost stars among the Actions offering
this tool. Table 3 shows Actions selected for each SAST tool. For each selected Action, we reviewed
the documentation in order to create a Workflow for the Action. We created a Workflow for each
Action and executed it on each repository.

6.2 Results
Table 3 shows the results of this experiment.

Table 3. Results of SAST tools on EMBOSS repositories.

Action Result format # Success
Repo

# Failure
Repo Reasons for failure Total

# warn
Median
# warn Precision

david-a-wheeler/flawfinder SARIF 176 82 Invalid SARIF, Python Error 4,637 12 20% (64/316)
cpp-linter/cpp-linter-action GCC error msg 230 28 Timeout, Python Error 212,228 111 0% (0/213)
deep5050/cppcheck-action GCC error msg 256 2 Timeout 31,873 19 58% (116/200)
CodeQL Autobuild SARIF 74 184 Autobuild failure 471 0 96% (154/160)
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6.2.1 Tool Execution. The encapsulation of all the steps to set up (e.g., dependency installing) a tool
in GitHub Action makes it straightforward to run each tool on all the repositories in the EMBOSS
dataset. More concretely, it requires placing the tool Workflow file in .github/workflows folder of
the repository and pressing a button on the repository webpage on GitHub.

6.2.2 Tools Failures. Except for CodeQL, all Actions ran successfully on most of EMBOSS reposi-
tories. Nonetheless, there are many repositories where Actions failed, and Table 3 also shows the
common reasons for the failure. Despite the success of CodeQL on Juliet Test Suite (Table 2), Cod-
eQL failed on the majority of EMBOSS repositories. The reason for this is the failure of the autobuild

step. This mechanism is good at handling non-embedded projects that use standard build proce-
dures, such as make, cmake, etc. However, embedded projects usually use a customized build process
with diverse toolchains. For example, ARMmbed/DAPLink uses a customized Python script to build the
project. Such custom build processes cannot be handled by autobuild.

6.2.3 Tools Effectiveness. As shown in Table 3, flawfinder and CodeQL produce results in SARIF
format, which makes it easy to navigate to the source location corresponding to a warning. However,
the other tools, i.e., cpp-linter, and cppcheck, produce a non-standard textual message, making
triaging warnings tedious. This is in line with the observation made by a recent study [20], where
developers were concerned about ineffective error reporting mechanisms of SAST tools.
Table 3 also shows the total and median number of warnings across all repositories on which

the corresponding tool ran successfully. At a high level, except for cpp-linter (with 111), all other
tools have a moderate number (< 20) of median warnings. The median warnings are 0 for CodeQL
because it did not produce warnings on more than 50% of repositories.

The lack of ground truth data on our EMBOSS repositories makes it challenging to evaluate the
precision/recall of each tool. Given the large number of warnings, it is infeasible to check them
all. Therefore, we randomly sampled warnings to determine if they were legitimate. Specifically,
for each tool, we randomly selected 30 repositories with fewer than 20 warnings and manually
checked each warning for these repositories. The last column in Table 3 shows the precision.
CodeQL has the highest precision of 96% — this is unsurprising given its effectiveness on Juliet
Test Suite (Table 2). At the other end of the spectrum, cpp-linter had the least precision, 0%!. Most
of cpp-linter’s warnings were related to missing header files, pre-processor directives, and other
compile-time errors. cpp-linter uses a fixed mechanism for compilation and cannot handle custom
build setup in each repository, resulting in false positives.

Finding 4: Few SAST tools produce warnings in a non-standard text format, hindering their
usability. This aligns with a recent study [20], where developers raised this as a concern for not
using SAST tools.
Finding 5: Except for CodeQL, all other SAST tools executed successfully on the majority
of EMBOSS repositories. CodeQL tries to compile the target repository automatically but fails
to handle the diverse build infrastructure of the majority (184 (71%)) repositories.
Finding 6: Our preliminary evaluation based on random sampling shows that CodeQL has the
highest precision on EMBOSS repositories.

7 RQ3: EFFECTIVENESS OF SAST TOOLS ON EMBOSS
We want to understand if EMBOSS can benefit from using an effective SAST tool. Specifically, we
want to validate the developers’ perspective that SAST tools may not be effective on embedded
software (Section 5.3). In Section 6, we ran SoTP SAST tools on EMBOSS repositories. However,

, Vol. 1, No. 1, Article . Publication date: October 2023.



An Empirical Study on the Use of Static Analysis Tools in Open Source Embedded Software 11

given the large number of warnings, it is infeasible to verify all of them manually. Therefore, in
this section we focus on the best tool identified so far.

7.1 Method
We select the most effective SAST tool among those we considered so far. We configure it for each
repository in our corpus. Then, we manually analyze all the alerts and warnings to understand its
effectiveness specifically on EMBOSS.

7.1.1 Tool Selection: CodeQL. We picked CodeQL for our experiment as it satisfies all our require-
ments. First, it is the most effective open-source tool for bug finding based on a previous study [70]
and also based on our evaluation of CodeQL on the Juliet Test Suite (Table 2) and random sampling
(Section 6.2.3). Second, it is maintained by Microsoft and has an active and responsive community.
Finally, several reports [4, 5, 50] show that CodeQL was able to find several high-impact security
vulnerabilities in large and well-tested codebases. Furthermore, CodeQL’s extensive documenta-
tion [53], automated scanning [51], and various other support tools [43] make it one of the easiest
tools to integrate in CI Workflows. We used CodeQL command-line toolchain release 2.13.1 (May
3, 2023) and the query repository based on the commit 202037e925 (May 12, 2023).

7.1.2 Build Scripts Creation. As described in Section 6.2.3, CodeQL failed to compile various
(184) EMBOSS repositories because of using non-standard build setups. We tried to manually
create build scripts for these repositories by referring to their documentation and CI scripts. We
also made the build scripts cover as much part of the codebase as possible (e.g., by compiling all
example applications and all supported architecture and boards whenever possible). Even for the
repositories where CodeQL’s autobuild worked, we manually created build scripts to cover most
of the codebase.We were able to successfully create build scripts for 154 (60%) repositories. For the
other 104 repositories, the build instructions were either missing (17), too complex (i.e., unavailable
toolchains or dependencies) (51), or did not work (36). On average, it took 45-60 minutes to create
self-contained build scripts for each repository.

7.1.3 Configuring CodeQL. CodeQL supports many suites (i.e., collections of queries). We
choose cpp-security-and-quality as it contains the most queries — 166 in total. However, we excluded
a few of its queries and modified a few others to improve their precision.

Excluded Queries: We omitted 9 queries from the CodeQL suite for three reasons: (1) they
identify code smells but not necessarily defects; (2) the potential risk of the corresponding defects is
relatively low (e.g., converting the result of an integer multiplication to a larger type is an issue only
when the result is too large to fit in the smaller type); or (3) they are not applicable to embedded
software. Appendix G in our extended report [26] shows the complete list of excluded queries and
our detailed rationale.

Modified Queries: Wemodified 3 queries to improve their precision and ignore certain restrictions.
Appendix H in our extended report [26] describes all 3 changes. For example, we modified cpp/ ⌋
constant-comparison to only report comparison that is always false because we found that always-true
comparison is usually not a defect. For instance, developers can be overly cautious and perform the
same check multiple times, where the second check will always be true. e.g., if (p!= NULL).....if

(p != NULL). CodeQL accepted one of our query modifications into their main repository [3].

7.1.4 Workflow Creation. We created GitHub Workflows for all the successfully built repositories
(154). These Workflows, when triggered, invoke the necessary build scripts and run CodeQL with
the required configuration.
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7.2 Results
The scrutiny of the results demanded the dedicated efforts of two authors spanning 25 days. We
analyzed the results of 143 (out of 154) repositories. The remaining repositories have a substantial
number of defects, and we did not have sufficient time to analyze them thoroughly. In total, across
all the 143 analyzed repositories CodeQL reported 578 errors (potential defects) and 2,294 warnings
(code-smells, undefined behaviors, etc.). Table 4 summarizes the results.

Table 4. Summary of CodeQL results and their analy-
sis.

Number of ... Value

Setup

Repos in dataset 258
Repos built 154
Repos analyzed 143

CodeQL Results

Errors reported 578
Warnings reported 2,294

Manual Analysis

Defects discovered 540
Repos where defects were discovered 83 (60%)
Security defects discovered 399
Repos where security defects were discovered 71 (51%)

Responsible Disclosure

Defects confirmed 273
Security defects confirmed 219
Pull requests raised 139
Pull requests merged 81
CVEs issued 2

7.2.1 Defects Discovered. We discovered 540
defects (spanning 83 repositories), of which 399
are security vulnerabilities (spanning 71 repos-
itories). Note that multiple errors or warnings
might be raised for a single defect. Figure 3
shows the number of defects found across var-
ious repositories according to their categories.
At a high level, across all categories, the number
of security defects is more than that of the num-
ber of non-security defects. Furthermore, the
number of defects is proportional to the num-
ber of repositories of the particular category
(Table 1). For instance, Network (NET), Operat-
ing Systems (OS), and Applications (APP) are
the top three categories containing the high-
est number of repositories (128 (50%)), and
they also contain the highest number of de-
fects (344 (64%)). The Memory management li-
braries with the least number (4) of repositories
also have the least defects (1). Also, the num-
ber of defects is proportional to the size of the
codebase. For instance, although NET has more
repositories than OS, i.e.,. The median SLOC of
OS, i.e., 409K, is higher than NET, i.e., 36K. Con-
sequently, the number of defects in OS reposi-
tories is larger than NET, i.e., 166 v/s 96. In summary, the density of defects remains constant across
various EMBOSS repositories.

Defects in Each Repository. Figure 4 shows CDFs of the number of all defects and security
defects in each repository. A point (𝑥,𝑦) on a line indicates that 𝑦% of repositories contain less
than 𝑥 corresponding type of defects. The left-most point on both the lines indicates that there
are 60% (83) repositories with at least one defect, and 51% (71) repositories with at least one security
defect. The security defects line has almost the same trend as total defects, indicating that most
defects in all repositories are security-relevant. Although 90% of the repositories have less than
ten total defects, there are still a considerable number (8) of repositories with a large number of
defects. Table 5 shows the top 5 repositories with the highest total defects, security defects, and
their OSSF criticality score.

Common Types of Security Defects. We found several classes of security defects across all
repositories. Figure 6 shows the top 10 major types of security defects (i.e., vulnerabilities) [54]
found along with the corresponding number of defects. We will discuss the top three types of
defects and corresponding rules:
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Fig. 3. Number of defects of each type in EMBOSS of various categories (Table 1). The number next to the
category indicates the number of repositories containing at least one defect.

Table 5. EMBOSS repositories with the top 5 highest total defects and security defects.

Total Defects Security Defects

Repo Criticality Score Num Repo Criticality Score Num

contiki-ng/contiki-ng 0.67 32 openlgtv/epk2extract 0.45 27
openlgtv/epk2extract 0.45 29 gozfree/gear-lib 0.43 24
ARMmbed/mbed-os 0.72 27 raysan5/raylib 0.70 23

introlab/odas 0.46 25 contiki-ng/contiki-ng 0.67 22
gozfree/gear-lib 0.43 24 jnz/q3vm 0.34 18
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Fig. 4. CDFs of # of all and security-relevant defects in
a repository.
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Fig. 5. CDF of the severity of security defects

• cpp/inconsistent-null-check: This rule identifies cases in which a function return value is not
checked for NULL, while most other calls to the same function check the return for NULL. Developers
should always check the return value of such function if it may return NULL to prevent subsequent
null pointer dereference. This rule detected 122 such instances. Appendix A in our extended
report [26] shows an instance of this issue from the ARMmbed/mbed-os repository.
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// apache/nuttx/drivers/sensors/apds9960.c

ret = register_driver(devpath, &g_apds9960_fops, 0666, priv);

if (ret < 0)

{

snerr("ERROR: Failed to register driver: %d\n", ret);

kmm_free(priv)�;

}

�priv->config->irq_attach(priv->config, apds9960_int_handler, priv);

Listing 1. The memory pointed by priv can be freed (�) inside the if condition but will be accessed later
outside, resulting in use-after-free (�).

0 50 100 150

cpp/inconsistent-null-check
cpp/uncontrolled-allocation-size

cpp/wrong-type-format-argument
cpp/unbounded-write

cpp/missing-check-scanf
cpp/offset-use-before-range-check

cpp/incorrect-allocation-error-handling
cpp/overflowing-snprintf
cpp/constant-comparison

cpp/toctou-race-condition
cpp/overrunning-write

122 (36.2%)
42 (12.5%)
38 (11.3%)
36 (10.7%)

24 (7.1%)
20 (5.9%)

15 (4.5%)
12 (3.5%)
12 (3.5%)

8 (2.4%)
8 (2.4%)

# security-relevant defects

Fig. 6. Top 10 CodeQL queries by # of security-relevant defects found. (Counts and Percentages)

• cpp/uncontrolled-allocation-size: This indicates cases where the allocation size argument of a
memory allocation call (e.g., malloc) is a multiplication of operands derived from potentially
untrusted input (e.g., user input). When the operands hold a really large value, an integer
overflow [41] might occur and yield a significantly smaller value than intended. Hence, the size
of the allocated memory may be considerably less than expected. Subsequent attempts to access
the allocated buffer would lead to buffer overflows. This rule detected 42 instances. Appendix A
in our extended report [26] shows an instance of this defect in the embox/embox repository.

• cpp/unbounded-write: This rule detects the class out-of-bound write vulnerabilities [94]. Specifically,
this includes analysis of potentially dangerous function calls (e.g., strcpy, sscanf) to check whether
these are used properly with valid arguments. This rule detected 36 vulnerabilities of potential
buffer overflow. Appendix A in our extended report [26] shows an instance of this vulnerability
in the aws/aws-iot-device-sdk-embedded-C repository.

Severity of Security Defects. The severity of a security bug depends on its exploitability and
the criticality of the underlying software [39, 100]. Given the large number of defects, manually
assessing exploitability is intractable. Instead, we use the OSSF criticality score (Section 4.1.3) of
the target repository to assess the severity of a bug. Figure 5 shows the CDF of the severity of
security defects. Specifically, a point (𝑥,𝑦) on the line indicates 𝑦% of the defects have severity
less than or equal to 𝑥 . 50% (∼ 100) bugs have a severity score of more than 0.5, which represents
high-severity repositories (Section 4.1.3). Specifically, 40% of bugs have a score of more than 0.6,
representing vulnerabilities in critical repositories. For instance, we found an off-by-one error in
micropython/micropython (Listing 2) and a use-after-free in apache/nuttx (Listing 1), a RTOS with a
score of 0.69 – both of these are critical projects.
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Common Types of Non-Security Defects. These defects may not lead to security vulnerabilities
but can cause functionality issues, undefined behavior, and compilation issues. For instance, the rule
cpp/missing-return detects non-void functions with no explicit return statement. This may result in
undefined behavior during runtime [69]. Similarly, the rule cpp/virtual -call-in-constructor detects
calls to virtual functions in a constructor. They may not resolve to the intended function [33]. We
provide more details about the major types of non-security defects in Appendix C of our extended
report [26].

7.2.2 Precision. To study the precision of CodeQL results, we sampled 37 repositories andmanually
categorized all errors and warnings into true and false positives. A false positive means that the
result does not match what the rule intends to detect, e.g., an error for an uninitialized variable
when it is actually initialized. True positives are further classified as true defects and harmless
reports. A harmless report means that although the result matches the rule’s intention, it is not a
defect in the specific context of the code. e.g., cpp/inconsistent-null-check might report a function
call with a missing NULL check of its return value. Although the warning is true, it might be infeasible
in the specific context. The overall percentages of true and false positives are 77% (362/468) and 23%
(106/468), respectively. Out of 362 true positives, there were 158 harmless reports. Figure 7 shows
the CDF of the percentage of rules and their contribution to different types of results. Specifically,
a point (𝑥,𝑦) on a line indicates 𝑦% of the rules have resulted in less than or equal to 𝑥% of the
corresponding results. Approximately 60% rules had no false positives, and 22% had no true positives.
This indicates that false positives are polarized, and a few rules contribute to the majority of false
positives. We provide a detailed discussion on rules contributing to the false positives in Appendix
B of our extended report [26].
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Fig. 7. CDFs of the percentages of rules and cor-
responding defect types.

// micropython/extmod/vfs_lfsx.c

size_t from = 1;

char *cwd = vstr_str(&self->cur_dir);

while (from < CWD_LEN) {

for (; cwd[from]� == '/' && from < CWD_LEN�;

++from) {↩→
// Scan for the start

}

...

Listing 2. The offset from is used before the range
check (�), leading to an off-by-one error (�).

7.3 Responsible Disclosure and Developer Response
We responsibly disclosed all the identified defects either by raising issues or pull requests with
appropriate patches (where possible). The bottom part of Table 4 shows the summary of our
responsible disclosure. In total, 51% (273/540) of defects have been confirmed by developers (via
merging our pull requests or expressing confirmation in replies to issues).
Most of the patches were readily accepted by the developers. In a few cases, developers were

even interested in knowing the techniques we used to find the defects. For instance, developers of
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aws/aws-iot-device-sdk-embedded-C said “I’m curious how you stumbled across this — Was there some
sort of test you ran or was this something that came up during your development? I’m hoping we can
duplicate your method of discovery to add some sort of check/test to the repo.” We are in the process
of raising pull requests to integrate our CodeQL Workflows into corresponding repositories.
There were two pull requests where the developers did not choose to fix potential security

issues. They stated that although code robustness is important, they deemed reduced code size
and RAM usage to be a higher priority in their embedded software. These observations support
the conventional wisdom that software engineers (and especially engineers in embedded systems)
trade-off between security and performance [48, 59].

7.3.1 CVE Assignment. Our research confirmed the observation of prior work [76], that security
defects are often fixed “silently”, without tracking via a Common Vulnerability Enumeration (CVE).
When we disclosed the security-relevant defects, we did not explicitly ask the engineering teams to
issue CVEs. Of the 94 repositories against which we opened at least one security-relevant defect,
only two issued CVEs for these defects: mbedtls issued CVE-2023-BLINDED, and contiki-ng issued
CVE-2023-BLINDED. We eventually followed up on our 77 reports of defects to the 10 most popular
repositories (by GitHub stars) to inquire whether CVEs were being prepared. Two of the engineering
teams replied suggesting that we email their security teams — we did so, but received no response.
The other eight teams did not respond.

7.4 Effectiveness of Stringent Compiler Flags
As reported in Section 5.3, EMBOSS developers often use strict compiler flags/warnings instead
of SAST tools. We evaluated the effectiveness of these flags in finding the defects detected by Cod-
eQL. We used security bug test case files from the CodeQL repository for this experiment. These
are simple test cases (< 10 lines), each containing an obvious security issue, e.g., passing an invalid
pointer types to a function call. We selected test cases to cover all 82 of the identified defect types
and compiled them using the latest version of gcc, i.e., 11.4.0, with strict warnings ( -Wall, -Wextra

-Werror). This configuration of gcc found issues in only 17 (21%) defect types (details in our extended
report [26]). gccwas able to find certain simple security issues, such as direct use of strcpy. However,
it did not find more complex ones related to code quality, such as inconsistent null check. Our
results indicate that the current EMBOSS practice of reliance on gcc warnings is inadequate.

Finding 7: The default build step of CodeQL (autobuild) fails on many EMBOSS projects. How-
ever, getting CodeQL running takes minimal engineering effort, 45-60 minutes per project.
Finding 8: CodeQL discovers many security and non-security defects in EMBOSS repositories,
including repositories maintained by reputed organizations like Amazon and Microsoft.
Finding 9: The strict compiler warnings commonly used by developers (instead of SAST tools)
are less effective than CodeQL at finding code defects.
Finding 10: Recent work has shown that developers will tolerate a reasonable level of false
positives, even far exceeding the traditional bound of ∼20% [20]. The false positive rate of Cod-
eQL meets developers’ requirements — we sampled 468 of its warnings and measured a false
positive rate of only 23%.

8 LIMITATIONS AND THREATS TO VALIDITY
We acknowledge limitations and threats to the validity of our study.

, Vol. 1, No. 1, Article . Publication date: October 2023.



An Empirical Study on the Use of Static Analysis Tools in Open Source Embedded Software 17

Construct Validity: We scope the construct of security vulnerabilities to those detectable by
the SAST tools from the GitHub Marketplace. Other classes of security vulnerabilities exist but are
beyond the scope of our work.

Internal Validity: This work was a measurement study, and we made no causal inferences.

External Validity: Our methodology applies the SAST tools available in the GitHub Marketplace
to the open-source embedded software available on GitHub. Our results may not generalize to
other SAST tools, particularly commercial-grade ones such as Coverity and Sonar. Our results may
not generalize to other embedded software, particularly commercial-grade embedded software to
which costly techniques such as formal methods have been applied. To shed light on this threat, in
our analysis, we reported on the subset of commercially-developed open-source software, such as
Amazon’s aws/aws-iot-device-sdk-embedded-C and, and show that SAST tool was able to find defects.
Our study may suffer from data collection bias as we focus on projects and SAST tools available
on GitHub. There could be other EMBOSS projects (e.g., in BitBucket) and tools on which our
observations may not hold. We tried to avoid this by collecting diverse projects with varying sizes.

Limited Developer Study: Given the low number of responses, the observations from our devel-
oper study (Section 5.3) may not be generalizable to other EMBOSS repositories. As a mitigation,
the response rate was consistent with other surveys of GitHub developers.

9 DISCUSSIONS AND FUTUREWORK
We were surprised to find many security defects across various embedded software by using an
existing SAST tool. In retrospect, these results could be anticipated as most EMBOSS repositories
do not use SAST tools. Developers expressed concerns over the benefit and false positive rates
of SAST tools. However, most of the defects found by SAST tools are acknowledged and fixed by
developers; this shows that SAST tools can find important defects. Compilation required SAST tools,
such as CodeQL, cannot handle the diverse build setups of EMBOSS repositories and consequently
might fail to run. However, these tools can be easily configured to run with minimal engineering
effort. We created GitHub Workflows, which can serve as templates that developers can use to run
compilation required SAST tools effectively.

In summary, our results provide a solid case for the need to use standard SAST tools in EMBOSS
repositories. Our results also complement a recent work [22] that used simple systematic testing
to find several severe security issues in popular embedded network stacks. The research and
engineering communities need to enable and adopt well-known techniques on embedded software.
As part of our future work, we will work on improving CodeQL to improve its plug-and-play
performance and its query precision on embedded repositories.

10 RELATEDWORK
In Section 2 and Section 3 we discussed directly related work. Here we compare to more broadly
related work.

Embedded Operating Systems and Frameworks: Al-Boghdady et al. [12] conducted a thorough
analysis of four IoT Operating Systems, namely RIOT [9], Contiki [7], FreeRTOS [19], and Amazon
FreeRTOS [18]. Their results indicated an increasing trend in the number of security errors over time.
However, the error density remained stable or showed aminor decrease. Alnaeli et al. [15, 16] focused
their investigation on Contiki and TinyOS, finding an increase in the use of unsafe statements over
five years. Meanwhile, McBride et al. [84] analyzed the Contiki operating system and found that
while errors increased over time, error density decreased. Malik et al. [77] carried out a study on
embedded frameworks, evaluating security vulnerabilities from four popular edge frameworks.
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Their findings revealed that vulnerabilities often slipped through during development due to the
challenges of in-house testing of complex Edge features.

Other Analyses of Embedded Systems: Bagheri et al. [28] proposed a method for automatically
generating assurance cases for software certification. Jia et al. [64] propose ContexIoT, a context-
based permission system that instruments IoT apps to log fine-grained control and data flow context
in order to distinguish malicious behaviors in a robust manner. Celik et al. [34] present SOTERIA,
a system that applies static analysis and model checking to automatically analyze IoT apps and
environments for security and safety violations. They extract a state model from IoT source code
and use a model checker to validate desired properties. Evaluation on real-world SmartThings [96]
apps shows SOTERIA can effectively identify security and functionality issues in both individual
apps and multi-app environments. Our work broadens the scope of these studies. We analyze not
only several operating systems but also a diverse corpus of embedded software, highlighting the
challenges and effectiveness and offering a more comprehensive and holistic view of the security
landscape in IoT systems.

Developers’ Perspectives on SAST Tools: Johnson et al. [65] found that while developers
are aware of the benefits, false positives and the presentation of warnings act as barriers. Our
study revealed slightly different findings. In addition to false positives, developers were unaware
of the effectiveness of SAST tools on embedded software. However, Johnson et al. [65] did not
provide any insight into the adoption rates of static analysis tools. In a similar vein, Ami et al. [20]
conducted in-depth semi-structured interviews with 20 practitioners to shed light on developer
perceptions and desires related to static analysis tools. They considered these tools to be highly
beneficial in reducing developer effort and covering areas that manual analysis might overlook.
Among the challenges faced by developers, the significant pain points were false negatives, the
absence of meaningful alert messages, and the effort required for configuration and integration. Our
experiments with CodeQL (an effective SAST tool) showed contradictory results. We were able to
easily (with minimal engineering effort) configure and integrate CodeQL in EMBOSS repositories.
The alert messages were displayed in SARIF format and were easy to understand and evaluate.

11 CONCLUSIONS
We conducted an empirical investigation on the use of static analysis tools in open-source em-
bedded software. We found that there are many free plug-and-play static analysis tools that can
be integrated into analysis workflows, but that most of them do not perform well on embedded
software. However, CodeQL is effective. With minimal engineering cost, we configured and ran it
on 258 popular embedded software projects on GitHub. We found 540 defects (with a false positive
rate of only 23%), 273 of which have been confirmed. This includes 219 defects that are security
vulnerabilities such as crashes and memory corruption. The primary difficulty we observed in
the process was configuring diverse build systems, but this took minimal engineering effort per
project. We conclude that the current generation of static analysis tools, exemplified by CodeQL,
has overcome concerns about false positives and can be easily incorporated into embedded software
projects. If engineers adopted these tools, many security vulnerabilities would be prevented. Future
research should continue to push the bounds of vulnerability discovery, but effort must be made to
promote adoption.
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