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Abstract. Proprietary deep neural network (DNN) models are being deployed in
the cloud nowadays. With the increased usage of AI accelerators in the cloud, there
is a growing need for privacy protection for outsourced deep learning computations.
Existing works use a Trusted Execution Environment (TEE) to shield DNN parti-
tions, which puts a subset of the DNN model in TEEs and offloads the rest of the
computation on GPUs. However, these solutions use fixed security primitives and
model partition policy, which precludes per-model specialization to balance the
security and performance requirements. In this paper, we present a novel on-demand
model inference system, FlexGE, that partitions the DNN model between TEE and
GPU accelerator with programmable partition policies and protection primitives
based on the user’s configuration. FlexGE achieves this by tailoring the protection
profile as well as the model partition policy and partitioning the model at build time
as opposed to design time. We implement FlexGE using Darknet and GEVisor, and
evaluate it on five popular DNNs. Our evaluation shows that FlexGE is flexible and
outperforms the state-of-the-art in terms of security and performance.
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1 Introduction

Deep neural networks (DNNs) are widely used and often require excessive computational
resources. Meanwhile, cloud computing makes deep learning more accessible, flexible,
and cost-effective while allowing developers to build deep learning algorithms faster.
Artificial Intelligence as a Service (AIaaS) [26] in the cloud uses pre-trained models and
enables vendors to reduce the risk and hardware investment of their customers. At the
same time, the rapid increase in the complexity of the software stack in the cloud expands
the attack surface for machine learning applications. This raises privacy concerns about
DNN computations in untrusted environments, in particular, for DNN models outsourced
by a client to a remote cloud server. Attackers are financially motivated to steal these
models derived from expensive training with a significant engineering effort. As a result,
leakage of such proprietary models can cause severe financial loss and security issues.

To make matters worse, existing proprietary models are found to be not well protected,
especially since GPU as a Service (GPUaaS) [12] is prominent in the cloud. Using GPUs
to accelerate DNN makes model privacy protection even more challenging. Nevertheless,
directly applying TEEs to protect entire DNN models presents significant challenges, as
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most commercial GPUs (e.g., V100 and A100) lack TEE functionality. While some high-
end GPUs, such as those based on the Nvidia Hopper architecture [1], support confidential
computing, their cost remains prohibitively high for typical model users. For instance, an
Nvidia H100 GPU is over 15 times more expensive than a GeForce RTX 40901. Therefore,
researchers propose Trusted Execution Environment (TEE) shielded DNN partition [47],
[46], [54], which puts a subset of privacy-sensitive and critical components of the DNN
model in TEEs and offloads the rest computation on GPUs. However, these approaches
suffer from several drawbacks. First, they preclude per-model specialization to balance
the security and performance requirements. The rigid use of security primitives in these
techniques permanently locks the design into a fixed combination of security primitives
that is likely to result in suboptimal security/performance in many scenarios. Second,
they fix the model partition policy for each model, losing the flexibility to explore the
advantages of different partition policies. As a result, when the protection offered by a
hardware security primitive breaks down (e.g., physical attacks [28]), or the protection
offered by a security primitive is too expensive (e.g., the homomorphic encryption may
counteract the performance benefit of GPU acceleration), or the model partition policy
is not optimal, it is difficult and costly to decide how it should be replaced.

When multiple protection mechanisms or model partitioning policies are available for
a given model, selecting the most suitable configuration depends on various factors and
is best deferred until deployment time. This leads to one important research question: Is it
possible to switch between different protection primitives and model partition policies at
deployment time, avoiding the lock-in model partition that characterizes the status quo?
Our answer is that protection profile as well as model partition policy can cost-efficiently
be tailored towards a specific DNN model at build time, as opposed to design time.

To verify this idea, we design FlexGE, the first system framework that supports dif-
ferent model partition policies and protection primitives and enables flexible fine-grained
model partition at build time via delegating partial computations to different back-ends,
potentially in different protection domains, with different protection mechanisms. The
challenge is how to instantiate protection primitives for each model partition, what partition
granularity to use between different partitions, and what software hardening mechanisms
should be applied to mitigate the potential vulnerabilities of hardware primitives. To that
aim, we abstract the common operations required when partitioning arbitrary models
behind a generic API that is used to retrofit an existing DNN model into FlexGE. This
API reduces the manual porting effort of the existing DNN model by partitioning weight
matrix data using annotations. These annotations, alongside other abstract source-level
constructs, are replaced at build time by FlexGE to instantiate a given configuration.

There exists a significant gap in security and performance between TEE and GPU. This
large disparity presents a substantial trade-off space with potential for optimization. The
configuration space enabled by model partition, illustrated in Figure 1, is large and almost
impossible for a non-expert user to explore manually. This leads to the second research
question we explore: how to guide a typical user to navigate the vast configuration space
unlocked by FlexGE? To answer this, we propose a quantitative analysis framework that
formally defines the security-performance trade-off across various model partitioning poli-

1 At February 2025, the price of an H100 GPU is about $25,000, while the price of a GeForce
RTX 4090 is less than $1600
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Fig. 1: Design space of DNN model partition.

cies and includes an automatic algorithm for selecting the optimal configuration. Existing
works only consider a model-level partition policy that does not reflect the effect of system
protection profile variation (i.e., strong protection primitives offer higher security but can
reduce performance, while weaker protection primitives deliver better performance at the
cost of reduced security). We address the security-performance separation gap and argue
that model partitioning should incorporate not only model-level partitioning policies but
also system-level protection primitives. However, this design introduces an additional
challenge: while a weak protection profile can reduce performance overhead, it also risks
an extreme scenario where a single compromised protection primitive could lead to a com-
plete system crash. Therefore, we propose Configuration Space Layout Randomization
(CSLR), a co-design method for model and system co-configuration, hardening both the
partition and the protection primitives. As the workload has been partitioned and delivered
to different back-ends, FlexGE makes it impossible for the attackers to collect and piece
together all the information to complete the attack, as it requires the attackers to breach
all back-ends with different protection primitives. This design makes the system robust
and resilient to future attacks, assuming the partitioning mechanism fails.

We have developed a FlexGE prototype that integrates Intel Software Guard Ex-
tensions (SGX) to support CUDA kernel I/O encryption and VM/EPT-based GPU I/O
protection through a hypervisor, extending the security boundary of SGX from the CPU to
the GPU, as well as two hardening mechanisms (CFI [2] and ASLR [41]). Our evaluation
of several deep neural networks demonstrates the potential security versus performance
tradeoff space unlocked by FlexGE, e.g., exploring over 80 configurations for AlexNet.
Finally, we demonstrate that under an equivalent requirement, FlexGE outperforms the
state-of-the-art in terms of security and performance.

The contributions of this paper are as follows.

– We design FlexGE, a model inference system for DNNs that supports arbitrary partition-
ing policies between TEE and GPU, allowing flexible delegation of partial computations
to various back-ends with different protection mechanisms (§4).

– We propose a novel build time model partitioning mechanism that enables flexible
configuration and fine-grained partitioning of models (§4.2).
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– We propose a novel Configuration Space Layout Randomization (CSLR) mechanism
to enhance the security of the model inference system (§4.3).

– We propose Quantitative Metrics for characterizing both security and performance,
and the corresponding algorithm to identify the optimal configuration for each of the
partition policies (§5).

– Our evaluation demonstrates FlexGE’s security and flexibility for real-world usage on
a diverse range of DNN architectures (§7).

2 Background

2.1 Deep Neural Network

Convolutional neural network (CNN) [35] is a class of deep neural networks that typically
consists of an input and an output layer with a sequence of linear and non-linear layers
stacked in between. The linear layers include convolutional layers and fully connected
layers; the non-linear layers include activation and pooling layers.
Convolutional Layer. The parameters of a convolutional layer consist of a set of learnable
filters. Each filter is characterized by the width, height, and depth of the receptive field.
The depth must be equal to the number of channels of the input feature map. Let h, b, d
represent the height, width, and depth of the filter ω, respectively, and (x, y) refer to the
coordinates in the 2D output feature map. Formally, the convolution operation on a given
image I with filter ω can be described as follows:

CONV (I,ω)x,y=
h∑

i=1

b∑
j=1

d∑
k=1

ωi,j,kIx+i−1,y+j−1,k (1)

Let X and Y denote the input and output, respectively, and W= [ω1,...,ωn]
T be the

convolution filter. The corresponding convolutional layer is thus given by:

Y =Conv(X,WT ) (2)

Fully Connected Layer. The dense layer connects every input node to every output node.
It can be implemented as a convolutional layer with both filter height and width: 1. For
example, a dense layer connecting n input to m output can be viewed as a convolutional
layer that has m filters of size (1, 1, n).

Residual Neural Network (a.k.a. Residual Network, ResNet) [14] is another deep
learning model extended from CNN for addressing the vanishing gradient problem of CNN
to some extent, in which the network skips connections that perform identity mappings,
merged with the layer outputs by addition.
Residual layer. Suppose the output of linear operation of layer l+2 is zl+2, and the
ReLU [30] function is g. For a 2 layer skip residual layer, instead of al+2 = g(zl+2), the
output of layer l+2 is:

al+2=g(zl+2+al) (3)
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Table 1: Comparison between existing works and FlexGE.
Model Privacy Cloud/Device Backend Protection Partition Policy Flexible Configuration Fine Grained

Slalom [47] - Cloud Obfuscation Linear Layers - -
DarkneTZ [29] ✓ Device - Deep layer - -
Serdab [10] ✓ Device - Shadow layer - -
Magnitude [16] ✓ Device - Large-Mag. Weights - ✓
SOTER [43] ✓ Device - Intermediate Layers - -
ShadowNet [46] ✓ Device Obfuscation Non-Linear Layers - -
TEEslice [54] ✓ Device Obfuscation Slice - ✓
FlexGE ✓ Cloud (or Device) EPT and Cryptographic All ✓ ✓

(Extensible)

2.2 Intel SGX

Intel Software Guard Extensions (SGX) [32] is a Trusted Execution Environment (TEE)
that ensures the confidentiality and integrity of user code and data. SGX allows a process
to allocate a protected memory region, i.e., an enclave, within its address space. Intel SGX
affords the enclave hardware protections against CPU-based attacks but is not designed
to secure the communication between the enclave and external devices attached to the
system; that is, SGX’s security boundary is only within the CPU. One of the main reasons
for this is that all external device communication is traditionally handled by the OS. In
particular, the device drivers (loaded onto the OS) create and maintain a memory-mapped
I/O channel between a program and the intended device(s).

2.3 GPU Software Stack

The GPU device driver is responsible for the creation, deletion, and upkeep of a com-
munication channel with the GPU. Gdev [19], an open-source GPU stack consists of an
implementation of the CUDA driver API and libdrm and nouveau, which implement
the user- and kernel-space GPU device driver.

3 Motivation

Based on the model partition policy, existing TEE-based DNN model partition research
can be classified into five categories in Table 1, including shielding the deep layer into
TEE, such as DarkneTZ [29], shielding the shallow layer into TEE, such as Serdab [10],
putting intermediate layers to enclave like SOTER [43], putting fine-grained sub-layers
into the enclave, such as Magnitude [16] and TEEslice [54]), and shielding no-linear
layers into the enclave, e.g., ShadowNet [46].

Slalom [47] outsources the linear layers to the GPU for acceleration with masked
inputs while keeping the other layers inside SGX. However, Slalom protects the user input
privacy but not the model weights from the untrusted cloud server. State-of-the-art (i.e.,
TEEslice [54]) proposes a training-before-partition strategy, which involves expensive
training on a private model.

We make the following key observation from Table 1: existing DNN model partition
policies are fixed at the design time. This motivates us to design a flexible DNN model
partition framework corresponding to different users’ diverse security and performance
requirements. FlexGE seeks to enable users to easily and securely switch between TEE
and GPU with different protection primitives and partition policies at deployment time.
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Fig. 2: (a) FlexGE Architecture. (b) Configuration file.
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Fig. 3: Model partition policy

We now present an overview of the design of FlexGE in Figure 2(a). FlexGE is com-
posed of SGX-based CPU TEE and GPU, and two GPU I/O protection backends between
CPU TEE and GPU through a hypervisor and GPU runtime (i.e., Gdev): EPT/VM and
CUDA kernel Encryption. The encryption backend provides strong but expensive I/O chan-
nel protection, while the EPT-based backend provides weaker but more performant protec-
tion. The CPU TEE (i.e., enclave) and EPT/VM backend can be hardened via techniques
such as Control-Flow Integrity (CFI) and address space layout randomization (ASLR).
The security configuration is provided at build time in a configuration file provided by
the user including different protection configurations of various protection primitives
and model configuration with selected partition policy and protection configurations, and
FlexGE’s tool-chain produces a DNN model partition implementation with the desired
security characteristics. An example of such a configuration file is given in Figure 2(b).

FlexGE’s tool-chain enables calling external security functions via abstract gates
and data sharing between the enclave and GPU via abstract code annotations. Gates and
annotations form an API used to partition a DNN model in FlexGE. A given partition
configuration in Figure 2(b) is automatically replaced by our toolchain with a particular
implementation at build time.
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Int weight_offset;
Int weight_matrix[weight_offset];
…
cuMemcpy(dst, src, size, type);

Int weight_offset;
Int weight_matrix[weight_offset] 
__shared(gdev);
…
flexge_gate(gdev, cuMemcpy, 
weight_matrix);

Int weight_offset;
Int weight_matrix[weight_offset]
…
ept_gate(gdev, cuMemcpy, 
weight_matrix);

Int weight_offset;
Int weight_matrix[weight_offset]
…
encrypt_gate(gdev, cuMemcpy, 
weight_matrix);

Instantiated, EPT/VM protection
Instantiated, encryption protection

2

3

1Before porting
After porting

3’

Automatic

Semi automatic

(a)

Int weight_offset;
Int weight_matrix[weight_offset];
…
cuMemcpy(dst, src, size, type);

porting

Int weight_offset;
Int weight_matrix[weight_offset] __shared(gdev);
…
flexge_gate(gdev, cuMemcpy, weight_matrix);

Annotate shared data Annotate gate placeholders

Int weight_offset;
Int weight_matrix[weight_offset] =shared_malloc(weight_offset)
…
ept_gate(gdev, cuMemcpy, weight_matrix);

Replace with EPT/VM gate

Automatic gate 
instantiation at 
build time

Replace with shared memory

(b)
Fig. 4: (a) FlexGE code transformations. First, users manually annotate partitioned data with shared
(Gdev) annotation, and gate placeholders are automatically inserted. At build time, API primitives
are automatically replaced with the chosen mechanism. (b) EPT Backend Instantiation.

4.1 Fine-grained Model Partition Policy

The goal of FlexGE’s model partition policy is to support all the policies in existing works.
We omit the approach of ShadowNet [46] because it does not require configurations. For
sliced-based partition [54], we instead propose a fine-grained filter-based partition policy
to represent it. Totally, we provide five partition policies (P) for a DNN model including
layer-based and fine-grained filter-based partition, as shown in Figure 3.

1 According to the layer depth and closeness to the output layer in the TEE, two
deepest layers (Conv2 andReLU2) are put into the enclave (P1).

2 According to the layer depth and closeness to the input layer in the TEE, two
shallowest layers ( Conv1 and ReLU1) are put into the enclave (P2).

3 According to the absolute weight value, partial convolution layers with large-
magnitude weights and ReLU layers are put into the enclave (P3).

4 According to the filter value, ReLU1 and Conv2 with the filter of small values put
into the enclave (P4).

5 Putting randomly chosen intermediate layers in the TEE. In Figure 3, ReLU1 and
Conv2 as the random-selected layers are put into the enclave (P5).

4.2 Build-time Model Partition Mechanism

API and Build-time Instantiation. The GPU I/O backend security functions are made
through abstract call gates that are instantiated at build time. Shared data (e.g., weight
matrix) between CPU TEE and GPU is marked using compiler annotations, used at build
time to instantiate a given DNN model partition policy. FlexGE performs replacements
using source-to-source transformations, which gives it a better performance advantage
over heavyweight runtime abstraction interfaces.

Call Gates. In FlexGE, security function calls (EPT/VM, and encryption) are repre-
sented in the source code by abstract call gates. At build time, as part of the transformation
phase, abstract call gates are replaced with a specific implementation. For instance, when
the DNN model is configured to be in the GPU with EPT/VM backend, the call gate
performs VM enter call. Figure 4(a) presents an example of gates from the porting (step
2 ) to the replacement by the toolchain ( 3 and 3’ ).

Porting existing Gdev code to FlexGE consists of marking call gates, which can be
automated: Knowing the system’s control flow graph, static analysis determines whether a
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procedure call performs GPU I/O access and, if so, performs a syntactic replacement of the
function call with a call gate instead. However, in our current implementation, we manually
annotate the Gdev functions that perform I/O access (MMIO and DMA) with the abstract
call gate. The toolchain will then generate wrappers enclosing the implementations of the
functions in the appropriate call gates.
EPT/VM Backend. The EPT/VM backend is based on a small hypervisor. FlexGE’s
hypervisor provides GPU I/O protection, including MMIO and DMA, with an EPT mech-
anism. The hypervisor ensures that the DMA and command buffers are inaccessible to an
attacker who attempts to use the CPU to access these memory regions with EPT trapping.
In particular, the hypervisor maintains memory region mapping tables containing the
virtual and physical address pairs of both MMIO and DMA memory regions per enclave
within a reserved memory region and traps access to these regions for access control.
Compared with the encryption backend, the EPT-based backend provides weaker but more
performant protection. FlexGE provides two variants of EPT backend: EPT and EPT_2M
with huge page optimization [50].

Data Sharing. The EPT backend relies on shared memory areas to share model weights
across VMs in EPT and EPT_2M backends. Areas are always mapped at the same address
in the VMs so that pointers to/in shared model matrix structures remain valid. Each
VM manages its own portion of the shared memory area to avoid the need for complex
multithreaded bookkeeping.

Figure 4(b) shows the instantiating procedure of an EPT protection backend. Using the
programmable API, the user would first annotate shared data and add gate placeholders.
Then, at build time, FlexGE would replace the annotated shared data with a shared memory
location and replace the gate placeholder with an EPT/VM gate.
Encryption Backend. While FlexGE could use EPT to prevent unauthorized accesses
to DMA from privileged software with better performance, it cannot stop attackers from
attaching probes to the I/O bus and snooping the traffic to steal the code and data. Funda-
mentally, an EPT/VM protection would have to downgrade the threat model by excluding
potential physical attacks.

Instead, we design a crypto CUDA kernel to augment GPU with in-device Diffie-
Hellman (DH) key exchange, encryption, and decryption, enabling a crypto-secured
DMA communication channel between enclaves and GPU. A user enclave and the GPU
first performs local attestation to verify each other. Once they establish the trust through
attestation, the crypto kernel is loaded from the enclave to the GPU using MMIO, which
is protected by the hypervisor. Once loaded, the crypto kernel within the GPU launches a
DH key exchange to establish a shared secret key within the GPU memory and the enclave.
A physical bus snooping attack could observe our crypto kernel and even the DH key
exchange but not the shared secret established after. From this point, enclaves can encrypt
the code and data before exposing them in DMA. GPU will decrypt them inside the device
and encrypt the results again before writing them into DMA. Assuming an authenticated
encryption scheme, e.g., AES-GCM, we will not need a hypervisor anymore since any
tampering will fail the decryption and thus be detected.
Software Hardening. The flexible DNN model secure protection provided by FlexGE
allows enabling/disabling software hardening (SH) such as CFI, etc. Isolating DNN model
layers with SH from layers without it allows the former to maintain the guarantees offered
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by SH. This flexibility allows for alleviating the performance impact of SH by enabling
it only for sub-layers of a DNN model. Our prototype currently uses address space layout
randomization (ASLR) and CFI. ASLR hides the memory layouts from adversaries by
randomly placing code and data in runtime, which makes it hard for the victim code or
data to find the location so that control-flow hijack or data-flow manipulation attacks
are prevented. FlexGE employs fine-grained randomization by splitting the code section
of SGX enclave into a set of randomization units [41]. For CFI, our enforcement is per-
formed for all control transfer instructions for the program in the SGX enclave, including
indirect branches as well as return instructions. In the case of indirect branches, we add
masking operations to the destination so that it only points to one of the randomization
unit’s entry points. In the case of a return instruction, we replace it with two equivalent
instructions, pop reg and jmp reg, where reg can be any available register. Then, the second
jmp instruction is instrumented similarly to indirect branch instructions.

4.3 Configuration Space Layout Randomization (CSLR)

Inspired by Address Space Layout Randomization (ASLR) [42], we introduce Config-
uration Space Layout Randomization (CSLR) for FlexGE. The security of FlexGE is
directly related to the entropy [4] of the CSLR implementation. Low entropy would allow
an attacker to brute-force the entire search space and bypass CSLR if they can repeatedly
attempt exploits. To counter this, FlexGE utilizes fine-grained randomization schemes
to maximize CSLR entropy.

For DNN model-level fine-grained CSLR, FlexGE adopts a smaller partition size,
called a randomization unit. These units have a fixed, configurable size (e.g., in a 20-layer
DNN, a randomization unit size of 5 results in 4 partitions). The overall configuration
space is determined by permutations between model partitions and back-end protection
mechanisms. Consequently, CSLR entropy is proportional to the number of permutations
of model partition sizes and available back-end protections. FlexGE is designed to support
extensible back-end protection mechanisms, further enhancing system security.

5 Design Space Navigation

We propose a quantitative method (formal definition) given a configuration.

5.1 Quantitative Formalization

To systematically find the optimal model partition policy for a DNN model given a system
configuration, we formalize the problem as an optimization problem. Formally, let S be a
model partition solution that splits a DNN model into enclave and GPU-offloaded portions.
Let P denote a configuration policy of S that specifies to what degree the model is put into
an enclave. We define a security score and a performance score for a specific configuration,
Security(P) and Performance(P), which quantify the security risk and performance cost of
P, respectively. We define Securitymax as the security risk baseline of setting, which puts
the whole DNN model in an enclave.Securitymax denotes the lower bound of the security
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risk (the strongest protection). We also define Securitymin as the security risk upper-
bound of the setting, which puts all the layers out of the enclave and off-loads to GPU.
Securitymin denotes the upper bound of the security risk (the weakest protection). Then,
given the security requirement∆, we formulate the optimal configurationP ⋆ that satisfies:

P ⋆= argmin
|Security(P )-Securitymax|<∆

Performance(P ) (4)

We define the security score, Security(P), using model stealing accuracy [37], which
calculates how much test samples can be correctly classified by the attacker’s surrogate
model (We detail the model stealing procedure in section 7). Achieving high accuracy is
a primary goal of model stealing attacks [54]. Given the total test number Ntotal, and the
sample number can be correctly classified Ncorrect. Security(P) is defined as:

Security(P )=(Ncorrect(P )/Ntotal)% (5)

We define the performance score, Performance(P), using performance overhead. Sup-
pose the inference latency of the DNN layers conducted in the enclave is T_Enclave, and
the total inference latency corresponding to the configuration P is T_P , then we define
the Performance(P) as the ratio of inference latency in the TEE over the total inference
latency of the DNN model:

Performance(P )=(T_Enclave/T_P )% (6)

Thus, a larger Performance(P) indicates fewer computations are offloaded on GPUs,
leading to higher performance overhead.

5.2 Optimal Configuration Selection

For each of the five policies in section 4.1, we iterate possible configurations to identifyP ⋆ .
In particular, for the policy that shields deep layers (P1), we use a lightweight, greedy clus-
tering algorithm that assign layers into clusters. We begin the algorithm by placing the last
layer into a cluster; we then proceed to perform repeated clustering one more layer oper-
ations until an assignment of layers produces the optimal P ⋆. We shield different numbers
of consecutive “deep” layers starting from the output layer with TEEs. Similarly, for(P2),
which shields shallow layers, we put different amounts of consecutive layers starting from
the DNN input layer. For ResNet models, we use the residual layers as the dividing bound-
aries. For VGG models and AlexNet models, we use convolution layers as boundaries. For
shielding large-magnitude weights (P3), the number of protected weights is controlled by
a configuration parameter mag_ratio. We gradually set range of mag_ratio from 0.1 to 0.9,
until finding the optimalP ⋆. Similarly, for putting filter with small value into enclave (P4),
we set the filter_ratio. For shielding intermediate layers (P5), the number of shielded layers
is also defined by a configuration parameter, inter_ratio. Similarly, we set the range of in-
ter_ratio from 0.1 to 0.9. For P3, P4, and P5, setting mag_ratio, filter_ratio, and inter_ratio
to 0 represents the Securitymin while setting the parameters to 1 is the Securitymax.
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6 Implementation

We implement FlexGE based on Darknet deep learning framework [39] and a tiny hyper-
visor: GEVisor [50]. We implement a build-time source transformations toolchain. We use
the Vembyr PEG parser generator [36] to automate the development of a source-to-source
translator. Vembyr provides a convenient extension interface that allows us to construct
an abstract syntax tree (AST). The final compilation pass converts the AST into a concrete
syntax tree (CST) to print out the C code. FlexGE’s toolchain performs source transforma-
tions to (1) instantiate abstract gates, (2) instantiate data sharing code, (3) generate linker
scripts, and (4) generate additional code in Gdev according to backend-provided GPU I/O
protection recipes.

7 Evaluation

7.1 Evaluation Setting

Our experimental machine uses an Intel i7- 8700K 4.7GHz CPU with Intel SGX (SDK
v2.0), 6 cores, and 32GB of main memory. We use a NVIDIA GeForce GTX TITAN Black
GPU with 2,880 CUDA cores and 6,144MB GDDR5 384-bit memory.
Datasets. We use four different datasets in our experiments, including CIFAR10 [21],
CIFAR100 [21], STL10 [8], and UTKFace [53].
Models. The benchmark models include ResNet18 [14], VGG16_BN [44], AlexNet [22],
ResNet34 and VGG19_BN. We use the public models [34] as initialization for all the
experiments.

7.2 Case Study

In this section, we explore the vast performance/security design space enabled by FlexGE.
In Figure 5, we first partition the AlexNet model into four partitions and then plot the
inference time with the CIFAR100 data set for each configuration. We variate different
partitions with different protection backend configurations, while all of them apply policy
P4. For example, having partition1 in an enclave with hardening, partition2 in an enclave
with no hardening, partition3 in EPT_2M (EPT with 2M huge page optimization [50])
protection without hardening, and partition4 in EPT with hardening leads to a 30.8 seconds
inference latency. Overall, we observe that FlexGE enables a very wide range of security
configurations with significant performance variation. The configuration with all four parti-
tions in an enclave with hardening performs worst, with 119 seconds of inference latency. It
is worth mentioning that the red color does not attach with hardening because the GPU I/O
encryption protection cannot come with software hardening. Existing approaches assume
a one-size-fits-all all configuration are therefore suboptimal; in contrast, FlexGE enables
users to easily navigate the security/performance trade-off inherent in their application.
CSLR Security Analysis. AlexNet employs an 8-layer CNN with five convolutional
layers, two fully connected hidden layers, and one fully connected output layer. The
randomization unit is 2 with 4 partitions. The configuration space in our study is 80. As
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a result, the entropy of CSLR is proportional to 80∗4!. It is very hard for an attacker to
breach such a large randomization space.
Observation 1: Even with a small DNN architecture, FlexGE can provide strong security
protection with CSLR.

Fig. 5: AlexNet execution time for a range of configurations. Partitions are on the left. Software
hardening can be enabled • or disabled ◦ for each partition. The white/blue/red/green color indicates
the partitions are placed into. white : enclave, red : encryption, blue : EPT_2M, green : EPT.

7.3 Quantitative Evaluation for Model Partition Policies

Model Stealing Attack. The attacker first analyzes the target defense scheme and then
infers the architecture of the protected model based on the offloaded part, and the model
output with existing techniques [6] [7] to get an initialized model. Then, the attacker
chooses a public model (with the same or an equivalent architecture), trains this model
with queried data, and outputs the surrogate model (the recovered victim model). Lastly,
the attacker transports the model weights in the offloaded part of the surrogate model to
the corresponding parts of the initialized model.
Model Stealing Accuracy. We test the five partition policies and report the evaluation
results over five models (AlexNet, ResNet18, ResNet34, and VGG16_BN VGG19_BN)
in Table 2 (total 20 cases). As aforementioned, we also report the baseline settings
("Securitymin" and "Securitymax") for comparison. For each partition policy P in sec-
tion 4.1, we iterate possible configurations to identify P ⋆. For ResNet models, we use
the residual layers as the dividing boundaries. For VGG models and AlexNet models,
we use convolution layers as boundaries. For each model and dataset, we mark the high-
est MS attack accuracy in red and the lowest accuracy in blue. The results show that
TEESlice and FlexGE achieve the lowest MS attack accuracy. Due to the CSLR mech-
anism, FlexGE achieves the lowest MS attack accuracy in more cases than TEESlice.
Moreover, it maintains the lowest MS attack accuracy across all policies.
Observation 2: All policies have the potential to achieve the lowest MS attack accuracy.
Optimal Configuration. For FlexGE, we use the system configuration: Enclave with SFI
and ASLR software hardening, and GPU CUDA kernel encryption I/O protection and then
measure the values of the Performance(P ⋆) as defined in Equation 4 (the smallest value of
performance overhead to achieve Securitymax) for a given model partition policies P4.
Table 3 reports the performance overhead to achieveSecuritymax for each setting for MS.
We highlight the results of FlexGE in orange, while marking the lowest performance(P ⋆)
of other works in blue and the highest values in red. Overall, Table 3 implies that the
performance overhead to achieve Securitymax is distinct across different DNN models
and datasets. For example, to protect AlexNet from MS by putting deep layers into enclave,
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Securitymin P1(DarkneTZ | FlexGE) P2(Serdab | FlexGE) P3(Magnitude | FlexGE) P4(TEEslice | FlexGE) P5(SOTER | FlexGE) Securitymax

AlexNet C10 85.59% 70.95% | 34.64% 62.86% | 30.32% 60.79% | 29.88% 35.84% | 32.67% 70.76% | 33.98% 20.30%
AlexNet C100 62.33% 38.99% | 19.22% 42.33% | 20.53% 47.90% | 22.65% 21.97% | 21.21% 50.37% | 24.99% 11.77%
AlexNet S10 75.44% 73.55% | 35.22% 66.85% | 31.41% 68.49% | 31.89% 33.27% | 33.12% 37.98% | 18.71% 15.32%
AlexNet UTK 91.03% 85.90% | 60.63% 80.03% | 59.44% 79.29% | 59.12% 63.80% | 60.13% 57.63% | 48.54% 46.44%
ResNet18 C10 92.38% 84.95% | 50.86% 89.86% | 52.13% 83.16% | 51.54% 56.62% | 49.66% 88.45% | 52.23% 17.87%
ResNet18 C100 80.24% 70.15% | 39.78% 75.02% | 41.22% 69.25% | 40.22% 41.88% | 38.95% 75.01% | 41.07% 13.44%
ResNet18 S10 86.53% 83.86% | 51.36% 83.31% | 51.16% 70.08% | 49.97% 55.22% | 48.33% 80.41% | 50.66% 21.36%
ResNet18 UTK 90.23% 83.54% | 53.19% 81.77% | 52.45% 61.37% | 49.88% 53.88% | 47.96% 75.66% | 51.85% 46.88%
ResNet34 C10 90.89% 84.33% | 59.22% 30.17% | 18.56% 20.85% | 15.33% 13.09% | 20.22% 90.06% | 62.39% 12.79%
ResNet34 C100 81.51% 71.32% | 50.88% 73.98% | 51.02% 75.48% | 51.39% 42.56% | 50.89% 79.67% | 52.77% 16.85%
ResNet34 S10 88.12% 83.69% | 54.98% 82.12% | 53.67% 65.97% | 45.33% 50.02% | 46.89% 79.64% | 52.17% 20.23%
ResNet34 UTK 86.91% 86.36% | 55.71% 76.78% | 50.49% 47.65% | 48.66% 47.94% | 47.25% 80.67% | 51.33% 47.06%
VGG16_BN C10 91.53% 85.29% | 54.65% 90.35% | 56.17% 81.06% | 53.21% 56.01% | 55.02% 90.77% | 56.55% 14.33%
VGG16_BN C100 71.84% 61.79% | 43.89% 70.48% | 48.13% 62.57% | 44.62% 46.91% | 46.66% 71.93% | 48.73% 10.65%
VGG16_BN S10 90.22% 87.69% | 51.44% 87.66% | 51.43% 80.09% | 49.77% 52.89% | 50.21% 88.43% | 52.54% 19.13%
VGG16_BN UTK 90.83% 85.45% | 53.88% 87.88% | 54.98% 55.69% | 53.91% 58.70% | 55.02% 90.21% | 55.28% 46.24%
VGG19_BN C10 91.95% 89.34% | 55.66% 84.95% | 53.37% 79.66% | 48.65% 41.07% | 48.66% 82.01% | 48.93% 10.88%
VGG19_BN C100 70.88% 62.97% | 44.65% 69.72% | 45.97% 61.38% | 45.11% 45.01% | 44.03% 46.72% | 45.67% 11.01%
VGG19_BN S10 90.11% 88.44% | 55.09% 86.82% | 55.01% 82.79% | 54.33% 34.07% | 54.67% 55.44% | 54.89% 19.67%
VGG19_BN UTK 90.14% 88.99% | 55.67% 87.02% | 55.34% 87.98% | 55.73% 58.32% | 55.62% 88.19% | 55.54% 43.87%

Table 2: MS attack accuracy for FlexGE with a randomized system configuration.

DarknetTZ needs to take about 98.91% performance overhead, which also suggests it puts
98.91% of the protected model in TEE to achieve Securitymax for CIFAR10 (C10) and
CIFAR100 (C100). However, for STL10 (S10) and UTKFace (UTK), it only needs to put
35% of the model in TEE to achieve Securitymax. Compared to other defenses, FlexGE
achieves the lowest performance cost in most cases. That is, FlexGE generally incurs less
performance overhead while achieving the highest level of black-box defense. One inter-
esting result we find is that, on average, P2 (Serdab) has more performance cost to achieve
Securitymax compared with P1 (DarknetTZ), which illustrates that it is more secure to of-
fload deep layers to GPU than offload shallow layers. The reason is that shallow layers are
close to input data and respond more to low-level photographic information of the original
inputs. In contrast, deep layers represent more abstract and specific feature information.
Observation 3: Shallow layers are close to input data and are more easy to expose model
privacy.

AlexNet ResNet18 ResNet34 VGG16_BN
c10 c100 s10 UTK c10 c100 s10 UTK c10 c100 s10 UTK c10 c100 s10 UTK

DarkneTZ 98.91% 98.91% 35.28% 35.28% 99.07% 99.07% 100% 35.12% 99.23% 99.23% 100% 35.33% 100% 100% 81.55% 66.45%
Serdab 98.97% 98.97% 99.11% 99.12% 99.91% 99.91% 100% 35.56% 70.50% 100% 100% 50.05% 100% 100% 100% 100%
Magnitude 72.91% 80.58% 100% 68.21% 100% 80.25% 100% 58.48% 19.37% 100% 100% 5.01% 100% 80.34% 100% 100%
TEEslice 64.21% 55.09% 33.22% 31.10% 49.97% 49.97% 51.78% 50.44% 20.87% 41.59% 45.96% 8.27% 55.88% 50.99% 51.56% 52.34%
SOTER 99.98% 99.98% 100% 58.73% 100% 100% 100% 100% 100% 100% 81.23% 100% 100% 100% 100% 100%
FlexGE 49.23% 49.98% 31.17% 31.03% 47.83% 44.22% 41.37% 39.66% 19.56% 35.27% 31.23% 12.44% 48.34% 43.11% 49.69% 40.71%

Table 3: Different Performance(P ⋆) values of optimal configuration in front of MS. A lower
value represents a lower performance overhead. The performance overhead for Securitymin and
Securitymax baselines are 0% and 100%, respectively.

7.4 Accuracy Loss

We compare the accuracy between FlexGE and TEESLICE as well as the baseline that
puts the whole model into the enclave. Following TEESLICE, we set the queried data sizes
as 1K, 2K, 4k 5K, 10K, 15K, 20K, 25K, 30K. We display MS accuracy on CIFAR100
and four models (AlexNet, ResNet18, ResNet34, and VGG16BN) in Figure 6. In general,
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Fig. 6: Comparison of FlexGE, TEESlice, and the whole enclave protection against MS attacks with
different sizes of queried data. △ represents TEESLICE, ⋄ represents FlexGE, and ✗ represents
whole enclave.

FlexGE does not lead to a considerable loss of accuracy corresponding to the baseline. We
choose the optimal configuration for FlexGE with the same performance score (81.66%)
with TEESLICE based on the evaluation methods in section 7.2 and 7.3. Across most
queried data, FlexGE achieves higher accuracy than TEESLICE, which depends on ex-
pensive supervised machine learning model training. This reliance can lead to overfitting,
potentially resulting in suboptimal outcomes.

7.5 Performance

We run the TEESLICE’s source code on the same Desktop PC with FlexGE. We choose
the optimal configuration for FlexGE with the same security score with TEESLICE based
on the results in section 7.3. We ran all experiments ten times and got the average infer-
ence time. The running time deviates is less than 10% from the average. We calculate
the throughput (images per second) as it is a common criterion to evaluate the speed of
machine learning systems.

Table 4 presents the throughput of FLexGE on three models (AlexNet, ResNet18,
and VGG16BN), as well as two baselines: putting the whole model in the enclave and
directly running on the GPU. The whole enclave is the throughput lower bound, and the
direct GPU is the upper bound. From the results, we can see that the throughput of direct
GPU (from 91.54 to 473.72) is much higher than that of the whole-enclave (from 1.52 to
7.63), demonstrating the efficiency of GPU. We choose the same security score (51.38%)
for FlexGE and TEESLICE. The throughputs of TEESLICE ranges from 38.09 to 80.10,
which is much faster than the whole-enclave baseline but slower than directly running on
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the GPU. In contrast, FlexGE’s throughputs range from 38.77 to 82.01. Most of the results
have performance speedups with reference to TEESLICE, which are, on average, 7.53%
faster than TEESLICE. The performance speedup mainly comes from FLexGE’s EPT I/O
protection primitives and optimization mechanism, such as the super page optimization
EPT_2 M, compared to the cryptographic I/O protection of TEESLICE.

AlexNet ResNet18 VGG16_BN
Whole Enclave 6.51 7.63 1.52
Direct GPU 473.72 266.13 91.54

TEESLICE CIFAR10 40.05 58.43 68.60
CIFAR100 42.13 41.21 53.74
STL10 80.10 61.04 66.23
UTKFace 38.09 53.42 38.56

FlexGE CIFAR10 44.88 62.78 71.25
CIFAR100 48.51 40.85 56.62
STL10 82.01 62.92 70.13
UTKFace 42.44 52.89 38.77

Table 4: The throughput comparison between shielding-whole-model, no-shield, TEESLICE, and
FlexGE .

To analyze the performance of FlexGE further, we also logged the latency of different
parts during the inference phase. We break down the inference latency of FlexGE is
divided into three parts: data transfer, partition in the enclave, and partition on GPU. Data
Transfer refers to the time it takes to transfer data between SGX and GPU. Partition in
the enclave refers to the time it takes to compute the layers/filters inside SGX. Partition
on GPU is the time to compute the layers on the GPU. Table 5(a) displays the percentage
of each part over the total inference latency. From the table, we can see that partition in
the enclave occupies 65.09% of the inference time due to the constrained computation
resources inside SGX. Data Transfer occupies 32.18% of the inference time. In particular,
the data transfer with EPT protection spends 9.44% of the inference time, the data transfer
with EPT_2M has 8.32% of the inference time, and encryption protection occupies the
most time of data transfer, which is 14.42%. Partition on GPU only occupies 2.73% of
the time due to the strong computation ability of the GPU. Note that although FlexGE
introduces the additional overhead of Data Transfer, FlexGE still accelerates the overall
inference time to a large degree. The reason mainly derives from two aspects. On the one
hand, the EPT-based I/O protection introduces a low-performance overhead to the data
transfer. On the other hand, the partition in the enclave mainly comes from non-linear
layers, and most of the linear layers go to GPU, which largely speeds up the performance.
Observation 4: EPT based I/O protection introduces much lower performance than
encryption based I/O protection.

Data transfer Partition(Enclave) Partition(GPU)EPT EPT_2M Encrypt
9.44% 8.32% 14.42% 65.09% 2.73%

(a)

SST-2 MRPC RTE Average
Whole-enclave 51.72% 69.67% 49.58% 57.15%

Direct-GPU 93.42% 86.57% 69.99% 82.26%
FlexGE 52.29% 70.34% 50.13% 58.65%

(b)

Table 5: (a)FlexGE inference time breakdown.(b)MS accuracy on BART
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7.6 Overheads: Shared Data Allocations, Gate Latencies

In FlexGE, the weight matrix can be shared via shared memory between Enclave and
the EPT backend or between VMs corresponding to the EPT backend and the EPT_2
M backend. To illustrate the benefits of the shared memory, we measure, for each of the
mechanisms, the execution time of a DNN model that allocates 1 to 3 shared weight
matrices (size 1K Byte) and returns immediately. The results are in Figure 7a. Shared
memory allocations between Enclave and EPT are about two times slower than typical
VMs shared memory allocations.

Another source of FlexGE overhead is gate latency. To illustrate the raw performance
of FlexGE’s gates, we measure the gate latency of Enclave ECall gate, Enclave OCall gate,
and EPT gate. The results are shown in Figure 7b. The Enclave OCall gate is slightly faster
than the Enclave ECall gate and 18x slower than the EPT gate. EPT latencies are similar
to syscall latencies without KPTI, illustrating the practicability of the EPT backend.

(a) Allocation latencies (b) Gate latencies

Fig. 7: FlexGE latency microbenchmarks.

8 Discussion

Scalability to Large Language Models (LLMs). Recently, LLMs (such as ChatGPT [33]
and LLaMA [11]) have been largely moved forward and widely used. LLMs bring new
challenges to model privacy protection solutions because their sizes usually contain up
to hundreds of billions of parameters that are much larger than traditional DNNs (only
hundreds of millions of parameters [20]). However, the idea of FlexGE can also be applied
to LLMs to protect the sensitive model privacy. To demonstrate the generalization of
FlexGE, we evaluate FlexGE on a representative LLMs model, BART [24], and three
datasets (SST-2, MRPC, and RTE) from the popular GLUE dataset [49]. We report MS
accuracy in Table 5(b).
Other Metrices for Security and Performance Score. Currently we use the model
stealing accuracy as the security score metric, however, fidelity [37] and Attack Success
Rate (ASR) [37] can be another two metrics for model stealing. Fidelity is the percentage
of test samples with identical predictions between the surrogate model and the victim
model, including the samples that are misclassified by the victim model. ASR measures
the transferability of adversarial samples. Moreover, for Membership Inference Attack
(MIA) [52], we can also take gradient-based MIA accuracy, generalization gap [51], and
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confidence gap [52] as the metrics. For the performance score, we can use FLOPs to
measure the utility cost of DNN models [16].

9 Related Work

Compartmentalization. Several compartmentalization frameworks [15], [31], [40],
[23] rely on code annotations for application porting. However, FlexGE targets data an-
notation by annotating the weight matrix offset of the DNN model. A few studies provide
various degrees of porting automation through data flow analysis [5,27], and KSplit [17]
applies compartmentalization and automation on driver isolation. Their principles can be
applied to increase the degree of automation of FlexGE.
GPU TEEs. Recent work explored implementing trusted architectures directly inside
GPUs to achieve isolation. Graviton [48] relies on architectural modification to the GPU
to support TEE for GPU. Similarly, HIX [18] relies on hardware modification to the CPU,
including SGX hardware and PCIe routing. Meanwhile, HETEE [56] supports large-scale
confidential computing using PCIe Express-Fabric to distribute computation over server
nodes that are physically isolated. StrongBox [9] and GEVisor [50] are software solutions
based on existing hardware to build GPU TEE. StrongBox targets for ARM Endpoints
based on TrustZone with an integrated GPU, while GEVISOR is designed to support
trusted GPU execution with SGX enclaves.
Model Privacy Protection Methods. Existing model privacy protection approaches
can be classified into four categories: two-party computation (2PC) based approaches,
homomorphic encryption (HE) based approaches, trusted execution environment (TEE)
based approaches, and obfuscation approaches. 2PC-based approaches [38], [45], aim
to protect the confidentiality of both user data in the client and DNN model on the cloud
server. HE-based approaches [13] perform secure inference based on encrypted DNN
model and encrypted data. TEE-based approaches as listed in section 3 focus on securing
DNN model computations in untrustworthy environments through TEE technologies.
Obfuscation approaches can be categorized into approaches that protect the model’s input
[3] and approaches that safeguard its structure[55,25].

10 Conclusion

In this paper, we have proposed FlexGE, a secure model inference system for DNNs that
supports arbitrary partitioning policies between TEE and GPU. It provides the flexibil-
ity for delegating partial computations to different backends with different protection
primitives and various policies.
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