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ABSTRACT
Incorrect handling of Software Application Programming Inter-
faces (APIs) errors results in bugs or security vulnerabilities that
are hard to trigger during regular testing. Most of the existing
techniques to detect such errors are based on static analysis and
fail to identify certain cases where API return values are incor-
rectly handled. Furthermore, most of these techniques suffer from
a very high false positive rate (≥50%), raising concerns regarding
their practical use. We propose a dynamic analysis approach to
detect API error handling bugs based on coverage-guided software
fault injection. Specifically, we inject faults into APIs and observe
how a program handles them. Our fault injection mechanism is
generic and targeted to explore a given program’s error handling
behavior effectively. We avoid false positives by proactively filter-
ing out crashes caused by infeasible faults. We implemented our
technique in an automated pipeline called FuzzERR and applied it
to 20 different programs spanning 444 APIs. Our evaluation shows
that FuzzERR found 31 new and previously unknown bugs result-
ing from incorrect handling of API errors. Moreover, a comparative
evaluation showed that FuzzERR significantly outperformed the
state-of-the-art tools.
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• Security and privacy → Software security engineering; Vul-
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1 INTRODUCTION
Application Programming Interfaces (APIs) form the building blocks
for modular software development by encapsulating complex func-
tionality. In this work, we focus on software libraries (i.e., shared
object or DLL) that expose certain functionality as external func-
tions. e.g., libpoppler.so library exposes various functions to
access PDF files. We call these external functions as API functions
or APIs. The complexity and requirements of APIs make it challeng-
ing to use them correctly, resulting in API misuse bugs. A recent
study [36] shows that 17% of bugs in application programs are be-
cause of API misuse. In this work, we focus on incorrect handling
of API errors (e.g., Listing 1), which is one of the major categories
of API misuse bugs.

Existing techniques to find API error handling or, more gen-
eral API misuse bugs can be broadly categorized into either specifi-
cation or anomaly-based. (i) The specification-based techniques [17,
35] check for violations of a given valid and precise usage specifi-
cation of API. However, as shown by a recent work [44], writing
precise specifications is tedious and requires considerable effort by the
developers. Furthermore, these specifications need to be written for
every API. (ii) The anomaly-based techniques [6, 14, 75, 78] exploit
the intuition that the misuse bugs are anomalous and will be in the
minority [24]. Given a set of API usages, these techniques identify
the minority usage patterns and consider them as bugs. However,
these techniques fail to precisely capture certain common usage
patterns and have a high false positive rate (∼50%) for complex APIs
(Section 7). Finally, as we explain in Section 2.2.1 (using a real-world
example), although an API appears to be used correctly in the local
context, there could be a misuse in the whole program context. In
a few cases, error handling itself could be invalid. For instance, the
return value of an API call is checked (i.e., used in an if condition),
but the check is semantically incorrect [1, 2].

Random testing, especially Fuzzing [32, 82], is shown to be an ef-
fective technique for software bug finding. However, triggering API
misuse bugs requires exploring deep program states, andmost often,
these bugs require changing the program environment. For instance,
to check misuses of fopen, we require it to fail and return NULL,
which depends on the external environment, i.e., file system, and
its permissions. Dynamic Software Fault Injection (SFI) [5, 65] is
one of the well-known techniques to inject faults during program
execution to mimic real failures. However, these techniques require
a specification of fault injection profile. Automated techniques are
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either specific to a particular class of applications, such as Operating
System (OS) drivers [9, 10] or specific class of API methods [52].
Furthermore, existing SFI techniques suffer from causing infeasible
program states, resulting in false positives [40, 55]. Finally, we need
fine-grained control over fault injection to expose deeper issues. For
instance, the bug in Listing 1 requires the API function poppler_ ⌋
document_get_page to only fail when called from a specific context
and succeed in all other cases – this is hard to achieve with many
existing SFI techniques. The recent technique Fifuzz [38] tries to
handle this by context-sensitive SFI, but it has false positives and
requires manual effort to filter out incorrect fault injection points.

Based on prior works [36, 56] and our observations, an effective
and practical SFI technique to detect API error handling bugs should
satisfy the following requirements:

• Generic. The technique should be able to handle different
APIs.

• False Positives Filtering. As automated fault injection might
inevitably result in false positives, we should have a way to
filter out potential false positives.

• Fine-grained Fault Injection. We should have fine-grained
control over fault injection and should be able to inject faults
at specific execution points.

We present FuzzERR, a dynamic analysis technique to detect API
error handling bugs based on coverage guided SFI. For a given pro-
gram (or program under test) and the target library implementing
a set of APIs, the goal of FuzzERR is to find bugs in the program
because of incorrect error handling of these APIs. The high-level
idea is to make APIs fail and observe how the program under test
handles these failures. We have designed FuzzERR to satisfy all the
desired requirements:
Generic SFI.We developed a generic fault injection mechanism us-
ing a library-centric technique. Specifically, we inject faults intoAPIs
by forcing their execution in the corresponding library along error
paths. This enables us to reuse existing API error behavior without
explicitly modeling their error behavior.
Filtering False Positives using Program Traces.We consider all
crashes that happen in the program as true positives, as we expect
the program to handle all API errors. However, as we explain in Sec-
tion 4.2.2, fault injection could violate certain invariants resulting
in false positive crashes. We developed a lightweight mechanism
based on program traces to detect potential false positives crashes.
Fully Context Sensitive SFI. Our fault injection technique is cov-
erage guided and fully context-sensitive. For instance, for an API
called in a loop, our techniques can inject fault only in the second
iteration of the loop. For a given program and an input, we repeat-
edly execute the program with the input. During each execution,
we inject faults into the target library at different fault injection
points, intending to improve the code coverage of the program.
The Table 1 summarizes existing tools and how FuzzERR satisfies
all the desired requirements.

We have implemented FuzzERR to be an automated pipeline and
demonstrate its effectiveness by evaluating on 20 programs span-
ning across 12 libraries and applicable bugs from APIMU4C [36]
dataset. FuzzERR found a total of 5,835 unique crashes resulting
from 31 previously unknown API error handling bugs. In summary,
the following are our contributions:

• We designed a novel and generic SFI mechanism by forcing
executions along error paths.

• We implemented FuzzERR an automated pipeline with all
our techniques, along with root cause identification.

• Our evaluation on 20 programs spanning across 12 libraries
and a bug dataset show that FuzzERR found a total of 31
previously unknown bugs, out of which 20 are already con-
firmed and fixed by the corresponding developers.

• We have made our implementation open-source and publicly
available at https://github.com/purs3lab/FuzzERR-final.

2 MOTIVATION
This section presents a motivating example and explains why exist-
ing techniques fail to identify the bug.

2.1 Motivating Example
The Listing 1 shows a real heap buffer overflow found by FuzzERR
in the latest version of apvlv PDF reader. The execution leading
to the bug is shown by the numbered symbol ·(1-5).

2.1.1 Root cause. The bug occurs when the call to libpoppler
API method poppler_document_get_page fails at line 33 in the func-
tion pagesize (indicated by �). This failure returns a nullptr,
which is consequently checked, and false is returned at line 39.
Note that in this failure case, the function does not modify the pa-
rameters x and y. In the success case, i.e.,when poppler_document_ ⌋
get_page returns a valid page corresponding to pn, which is used to
get the size and the parameters x and y are updated (code omitted
in the listing for brevity).

2.1.2 Execution flow. The function pagesize is called at line 12,
and the above-mentioned failure results in the variables tpagex

and tpagey being uninitialized. However, the return value of pagesize
is not checked, and subsequently, these uninitialized variables are
used to derive the size of a heap array dat at lines 17 and 19, result-
ing in an array of invalid size. This heap array dat is then passed as
an argument to the function setAnnot at line 24. The passed argu-
ment is accessed (via parameter buffer) using index p+1, which is
derived from ac->mFile. This index value p+1 can be larger than the
allocated size and thus results in heap buffer overwrite as indicated
by q.

2.2 Inadequacy of Existing Techniques
The bug in Listing 1 captures various aspects that make existing
techniques inadequate.

2.2.1 API Misuse Detection. As will be discussed in Section 7, these
techniques focus on identifying misuses of a given API function.
Specifically, these techniques [6, 13, 42, 44, 45, 57, 78] analyze the
local usage context of the target API function and check whether
it is valid. APISan [78], a recent work, checks for semantic pat-
terns, i.e., return value of an API function is checked before use.
However, these semantic patterns do not sufficiently capture API
usage semantics. There are several cases where an API return value
is checked, but the check is incorrect. APISan fails to find such

https://github.com/purs3lab/FuzzERR-final
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Table 1: Comparision of FuzzERR to other tools. For each of the features, we indicate whether the technique fully supports (✓), or does not
support (✗) the feature

Tool Category Tool Generic False Positives
Filtering

Fine Grained
Fault Injection

No manual
specification

No need
for valid uses

Systematic Static Approaches CodeQL [30] ✓ ✗ N/A ✗ ✓

Anomaly-based Static Approaches ApiSan [78] ✓ ✗ N/A ✓ ✗

FICS [6] ✓ ✗ N/A ✓ ✗

Arbitrar [44] ✓ ✗ N/A ✓ ✓

Dynamic Fault Injection Approaches
FairFuzz [43] ✓ ✗ ✗ ✓ ✓

Fifuzz [38] ✓ ✗ ✗ ✓ ✓

Lfi [53] ✓ ✗ ✓ ✗ ✓

FuzzERR (Our Work) ✓ ✓ ✓ ✓ ✓

bugs. For our example in Listing 1, the target API is poppler_ ⌋
document_get_page. However, it is being used correctly by check-
ing the return value at line 34. Consequently, these techniques fail
to find the bug. In fact, executing APISan on apvlv resulted in
76 warnings, and the bug in Listing 1 was not detected. Further-
more, we selected the top 10 highly ranked warnings and found
9 of them to be completely false (i.e., the return value was either
handled correctly or the warnings were false given how the library
actually works). The other warning, although true in the general
case, was a false positive in the case of apvlv. The warning was
about the return value of g_signal_connect() not being checked.
The function g_signal_connect() returns a handler id, which is
needed (or to be checked) only if the id will be used later to discon-
nect using g_signal_handler_disconnect. However, apvlv does
not disconnect, so not checking the return values doesn’t affect it.
Similarly, anomaly-based detection techniques, such as FICS [6],
also fail to detect because of missing anomalies, i.e., the return
value of poppler_document_get_page is always checked, whereas
the return value of ApvlvPDF::pagesize is never checked.

2.2.2 Automated Testing or Fuzzing. We require that the call to
poppler_document_get_page at line 33 to fail (i.e., to return nullptr),
which depends on its arguments mDoc and pn. The value of the first
argument mDoc is a document object pointer (global variable), not a
function parameter, and thus cannot be controlled by input. The
value of the second argument pn can be controlled through external
input. However, the corresponding value is checked at line 6 to
be within a valid range. Consequently, the value that reaches the
call site will be valid. This makes it hard for the call to poppler_ ⌋
document_get_page to fail while fuzzing the corresponding pro-
gram. Consequently, as we show in Section 5.4, the bug was never
found by existing fuzzing techniques despite the corresponding
code being extensively covered during fuzzing runs.

2.2.3 Software Fault Injection (SFI). First, existing SFI techniques [22,
22, 27, 80] require explicit specification of fault profiles i.e., how and
where the faults should be introduced. For our example in Listing 1,
a developer needs to explicitly specify that fault should be injected
at line 33 by assigning nullptr only when called from line 12. Note
that, always injecting fault would terminate the program early with-
out executing the vulnerable code. This sort of context-sensitive fault
injection is not possible with the existing techniques. A recent work,
Fifuzz [38], tries to handle this by using context-sensitive fault

injection. But, Fifuzz focuses on identifying bugs in error handling
code, but not on API error handling bugs. In other words, Fifuzz can
find if an API error is incorrectly handled, but cannot find if an API
error is never handled (Listing 2). As expected and also shown by our
experiments in Section 5.6.2, Fifuzz fails to find several bugs found
by FuzzERR. Finally, Fifuzz suffers from false positives because of
imprecision in identifying fault injection points. Consequently, a
large number (7,973 (81%) (Identified - Realistic) from Table 4 of the
paper [38]) of these are required to be manually filtered out.

3 BACKGROUND
The goal of FuzzERR is to find error handling bugs in a given pro-
gram 𝑝 of APIs present in a given library 𝑙 . This section presents the
necessary technical background and explains the notations used in
the rest of the paper.

3.1 Coverage Guided Fuzzing (CGF)
This automated testing technique aims to generate inputs that
can improve the code coverage of the program under test. As ex-
plained in Section 7, there are many ways to generate inputs. We
use mutation-based generation, wherein new inputs are generated
by applying various mutations to the provided seed inputs. We
use AFL++ [26], an extensible coverage guided and mutation-based
fuzzing tool, to guide our fault injection.

3.2 Terms and Notations
3.2.1 Fault Injectable Program Points (FIPs). These are locations
in a library where faults can be injected by FuzzERR. Specifically,
a FIP is a marker to a control flow instruction (i.e., if, while, switch,
case, etc.) that checks for certain invalid conditions and conse-
quently control execution into an error handling path. Note that
not all functions will have FIPs. Each FIP has a unique id (a sequen-
tial positive integer) and is represented by a FIP record, which is
a tuple: <source file name, function name, line number, column
number, [true or false]>. For the following code:
281 // poppler-image.cpp
282 poppler::image::data(...) {
283 if (..) {
284 ....
285 return NULL;
286 }
287 }
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Listing 1 A real heap-overwrite found by FuzzERR in apvlv PDF reader
because of incorrect handling of poppler_document_get_page API
failure.
1 void
2 ApvlvDocCache::load (ApvlvDocCache *ac)
3 {
4 // mPagenum is checked to avoid the failure of
5 // poppler_document_get_page
6 if (ac->mPagenum < 0 || ac->mPagenum >= c) {
7 debug ("no this page: %d", ac->mPagenum);
8 return;
9 }
10
11 double tpagex, tpagey;
12 ·1 ac->mFile->pagesize (ac->mPagenum,
13 gint (ac->mRotate),
14 &tpagex, &tpagey);
15 // if pagesize fails
16 // tpagex, tpagey will be uninitialized.
17 ·3 ac->mSize = tpagex * tpagex * 3;
18 // dat allocated wrong size.
19 ·4 auto *dat = new guchar[2 * ac->mSize];
20 ...
21 for (...)
22 {
23 ...
24 ·5 ac->setAnnot (annot, dat, ac->mSize);
25 }
26 }
27
28 bool
29 ApvlvPDF::pagesize (int pn, int rot,
30 double *x, double *y)
31 {
32 PopplerPage *page =
33 � poppler_document_get_page (mDoc, pn);
34 if (page != nullptr) {
35 ...
36 // initialize x and y according to pn
37 ...
38 }
39 ·2 return false;
40 }
41
42 void
43 ApvlvDocCache::setAnnot (...,unsigned char *buffer,
44 size_t buf_size) const {
45 // p derived from ac->mPagenum
46 // Heap Buffer overwrite
47 ·6 qbuffer[p + 1] = ...
48 }
49

FIP(45) =<poppler-image.cpp, poppler::image::data, 283, 9, true>,
indicates the FIP with id 45, and it is present in poppler-image.cpp

file and in function poppler::image::data at line number 283 and
character number 9. This indicates that a fault can be injected at
the if condition by forcing execution along the true branch. Given
a library 𝑙 , we use FIP𝑙 to denote the set of all FIPs in it.

3.2.2 Fault Injectable Library (FILib). We call a library (i.e., mod-
ule or shared object) in which faults can be injected at FIPs as
the Fault Injectable Library (FILib). Given a library 𝑙 , we denote the
corresponding fault injectable variant as 𝑙𝑓 .

3.2.3 Reachable Faults List (RFList). This is the list of all FIPs
reached during an execution of the program. Specifically, for a
given program 𝑝 using a fault injectable library 𝑙𝑓 and an input
𝑖 , RFList(𝑝 , 𝑙𝑓 , 𝑖) indicates the sequence of FIPs in 𝑙𝑓 that are exe-
cuted (i.e., reached) when 𝑝 is run with 𝑖 . Formally, RFList(𝑝 , 𝑙𝑓 , 𝑖)
= < 𝐹𝐼𝑃1, 𝐹 𝐼𝑃2, ...., 𝐹 𝐼𝑃𝑛 >, where ∀𝑥 ∈ [1, 𝑛] | 𝐹𝐼𝑃𝑥 ∈ 𝐹𝐼𝑃𝑙 . For
example, RFList(apvlv, libpoppler, test2.pdf)=<12,45,45,45,9>
indicate FIP ids of libpoppler that are reached (in that order)
when apvlv is executed with test2.pdf. The repeated id 45 in-
dicates that the corresponding library function is called in a loop

or from multiple call sites. For simplicity, we assume deterministic
execution, i.e., executing the same program 𝑝 with the same 𝑖 and
𝑙𝑓 results in the same RFList. Formally,

(𝑝 = 𝑝1 ∧ 𝑖 = 𝑖1 ∧ 𝑙𝑓 == 𝑙1
𝑓
) =⇒ 𝑅𝐹𝐿𝑖𝑠𝑡 (𝑝, 𝑖, 𝑙𝑓 ) = 𝑅𝐹𝐿𝑖𝑠𝑡 (𝑝1, 𝑖1, 𝑙1𝑓 )

3.2.4 Fault Injection List (FIList). For a given RFList of length
𝑘 , an FIList is a sequence of 𝑘 bits that indicate which of the
corresponding faults should be injected. For the previously men-
tioned RFList i.e., <12,45,45,45,9>, a possible FIList is <0,0,1,0,1>,
which indicates that fault should be injected at two FIPs i.e., at
45 (only for the second time) and at FIP 9. As we explain in Sec-
tion 4.2.2, we execute the program repeatedly with the same input,
consequently having the same RFList. Providing a different FIList
every time enables us to have fine-grained control over where the
fault injection should happen during the execution of the program.

3.2.5 False positive or Infeasible crash. This is a crash (e.g., seg-
mentation fault) induced by fault injection, which is impossible to
occur during regular program execution. Consider the following if

condition:
if (p != NULL) { *p = 0; return NULL; }

Let’s assume that FuzzERR injected a fault which made the ex-
ecution reach *p = 0 even when p is NULL. This results in a pro-
gram crash because of NULL-ptr dereference. However, the crash
is impossible in real program runs and hence is a false positive or
infeasible crash.

4 FUZZERR
First, we will present an overview (Section 4.1) of different steps
in FuzzERR and how each works on our example in Listing 1. Sec-
ond, we describe each step in detail (Section 4.2). Finally, we will
present the implementation details (Section 4.2.4). Our system re-
quires the program under test (𝑝) and a library 𝑙 , which is used by 𝑝 .
As mentioned before, the goal of FuzzERR is to find error handling
bugs in 𝑝 related to APIs in 𝑙 .

4.1 Overview
The Figure 1 shows the overview of FuzzERR, which contains the
following two distinct phases.

4.1.1 Generating FILib of 𝑙 (i.e., 𝑙𝑓 ). This phase is performed once
for a given library. Given the source code of a library, we perform
the following two steps.

FIP Identification (Section 4.2.1) We use source-level analysis and
common error handling patterns to identify FIPs, which, as men-
tioned before (Section 3.2.1), are the conditional statements guard-
ing execution into error handling paths. This results in the set
of FIPs in 𝑙 i.e., FIP𝑙 . For libpoppler used in Listing 1, the FIP𝑙
contained 139 entries.

Library Instrumentation (Section 4.2.1) We instrument conditions
represented by each FIP (∈ FIP𝑙 ) so that execution can be forced
along the error path guarded by the corresponding condition. An
example of our instrumentation is shown below:
if ( has_fault(12) || !has_space()) {

*ptr = NULL; return -1; }

Here, 12 is the ID of the corresponding FIP. This instrumentation en-
ables us to force the execution inside the if condition based on the
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return value of the newly inserted call has_fault(). Consequently,
injecting fault into the corresponding API.

The function has_fault() will be implemented by our helper
library that also includes the necessary logic to inject faults in a
fully-context sensitive manner. Finally, we link the instrumented
library and our helper library to get FILib of the given library 𝑙 , i.e.,
𝑙𝑓 . Our instrumentation also adds a record-only mode in 𝑙𝑓 that
stores (without any fault injection) the list of FIPs reached during a
run, which is needed to get RFList.

4.1.2 Program Testing (Section 4.2.2). This phase will be performed
for each program that uses our target library 𝑙 .

Generating RFList. For a given program 𝑝 and an input 𝑖 , we get
the RFList by executing 𝑝 with 𝑖 and using 𝑙𝑓 (instead of 𝑙 ) in record
mode. As explained in Section 3.2.3, RFList gives the list of FIPs in
𝑙𝑓 reached during the execution of 𝑝 with 𝑖 .

Coverage Guided Fault Injection. Next, we iteratively execute 𝑝
with 𝑖 and 𝑙𝑓 . In each iteration, we provide a FIList corresponding
to the RFList to 𝑙𝑓 . The FIList precisely configures fault injection
at various FIPs resulting in failure of APIs executed by 𝑝 . We gen-
erate FIList using various mutation techniques, starting with a
no-op FIList (i.e., all bits set to 0). Although we execute 𝑝 with the
same input 𝑖 , failures of different API calls (caused by FIList) can
change the execution path in each iteration, resulting in additional
code coverage in 𝑝 . We use this as feedback to our mutation engine,
and mutations will be directed toward improving the code coverage.

Handling Crashes.We consider all crashes in the program code
as true crashes. Given a crash, we minimize the crash causing FIList
by identifying the minimal faults that also lead to the same crash.
Finally, we perform a lightweight root cause analysis to identify
the API errors at the corresponding locations in 𝑝 that resulted in
the crash.

Crash Filtering. As we mention in Section 3.2.5, crashes in the
library could be false positives because fault injection could violate
certain program constraints. We develop a filtering technique that
discards false positive crashes by performing a lightweight analysis
on execution traces.

For our example in Listing 1, we first run apvlv with a simple
PDF file (test.pdf) and libpoppler𝑓 (i.e., FILib) in record-
only mode. This initial run gave us RFList with 54 entries. Next, we
repeatedly executed apvlv with test.pdf and libpoppler𝑓
and every time we provided a different FIList with 54 bits (same
size as RFList), which we generate through coverage guided muta-
tions. Our crash filtering was able to filter out 25.68K false positive
crashes resulting in 1,099 true crashes, including the heap over-
write in Listing 1. Finally, our crash minimization and root cause
identification found that the crash is because of a fault injected
into poppler_document_get_page at line 33.

4.2 Design
4.2.1 Creating Fault Injectable Library (FILib). This is the first
phase that works on a given library’s source code. Here the goal is
to generate a fault injectable version of the given library 𝑙 .

a) Identifying FIPs. Based on existing works [39, 49, 51, 58, 70], we
identified a set of source idioms listed in Table 2 that indicate that
the corresponding program path encountered an invalid condition.
We call these error markers. Given the source code of the target

library, first, we get Abstract Syntax Trees (ASTs) of all the func-
tions defined in it. Second, we go through the list of error markers
in Table 2 to see if any of them is present in a function’s AST. Third,
given a matched error marker, we identify the immediate control
dependency conditional statement [25] and consider that as an FIP.
We also note whether the error marker is in the true or false branch
of the conditional statement. In the case of switch statements, we
note the value of the corresponding case clause. This immediate
control dependent conditional statement is considered as an FIP,
and we create a corresponding FIP record (Section 3.2.1). We call
the path from a FIP to the corresponding error marker an error
handling path.

The Figure 2 shows examples demonstrating our FIP identifica-
tion technique. The red blocks show Basic Blocks (BBs) in Control
Flow Graph (CFG) of various functions containing an error marker.
The light-colored blocks show the error markers’ control depen-
dency blocks, and we only select the immediate control dependency
as a FIP. An example of error marker (⋆) and corresponding con-
trol dependent (q) conditional statements and the FIP in libpng
is shown below:

static store_palette_entry *
store_current_palette(png_store *ps, int *npalette)
{
...
qif (...) {

qif (ps->current == NULL) <- FIP
{
...
store_log(...);
⋆return NULL;

...
}

In the above example, we only consider the inner if statement
(i.e., immediate control dependency) as a FIP. We do not consider
the non-immediate control dependent conditional statements (e.g.,
outer if) as FIPs because they do not exclusively control the entry to
the error marker and consequently might be related to the program
functionality. In the end, we collect all FIP records in a json file
(i.e., FIP𝑙 ), which becomes an input to the next instrumentation step.

b) Instrumenting FIPs.We instrument each FIP as shown in Ta-
ble 3. For switch-based FIP, our instrumentation will force the
execution along the case containing the error marker. Our instru-
mentation enables us to have a common fault injection mechanism
irrespective of the type of FIP. Specifically, we can inject fault by
making the call to has_fault return 1. This will cause the execu-
tion to reach an error marker, irrespective of where it is (i.e., true
or false branch or case label). For instance, if the error marker
is in the false branch, our instrumentation modifies original_ ⌋
condition as !has_fault(<FID>) && original_condition. Here,
if has_fault returns 1, execution will be forced along the false
branch irrespective of original_condition and eventually reaches
the corresponding error marker. The same reasoning applies to all
other types of FIPs.

The has_fault function is part of our helper library (ferrlib),
which handles several aspects of our fault injection. This additional
level of indirection through ferrlib enables us to modify our fault in-
jection logic without re-instrumenting 𝑙 . We also have a record-only
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Figure 1: Overview of FuzzERR.

Table 2: Description of various code idioms used as error markers in functions of corresponding type (Section 4.2.1).

Function Spec Marker Description

Function return type is pointer return NULL; The function returns a NULL pointer, an invalid address.
return 0;

Function return type is integer return <negative_number>;
The function is returning a negative number.
Which are commonly used to indicate the error status.

Function return type is void

{
return;
}
large number of statements

The function is returning abruptly while the other
mutually exclusive branch contains most of the function’s code.

All functions
goto <error_label>;

The execution is abruptly directed to an arbitrary location.
A common pattern used to handle error conditions in system’s code [64].

exit(..), abort(..) These functions are used to terminate an execution.
Common pattern used to handle unrecoverable errors.

throw <exception>
The function is throwing an exception, a commonly used
paradigm to communicate error conditions.

FIP
FIP

FIP

(a) (b) (c)

BB with a
Error Marker

BB that controls execution
(control dependency)

reaching to a Error Marker

Figure 2: Examples demonstrating FIP identification technique.

mode in ferrlib, which can be enabled or disabled through an envi-
ronment variable. In this mode, no faults will be injected i.e., has_ ⌋
fault will always return 0, and in addition, all calls to has_fault

will be logged.

4.2.2 Program Testing Through Fault Injectable Library. This is the
second phase of FuzzERR, and it involves testing programs that
use the target library 𝑙 . For a given program, we first collect a set
of valid inputs from pre-existing test suites and augment them
with automated test-generation techniques. Next, we configure the

Table 3: Instrumentation of FIPs based on the edge leading to an
error marker. Here, FID is the id of the corresponding FIP.

Error Marker
Edge Original Code Instrumentation

true <original_cond> has_fault(<FID>) || <original_cond>

false <original_cond> !has_fault(<FID>) && <original_cond>

val (switch case)
switch(var) {
case val:
}

if (has_fault(<FID>)) {
var = val;

}
switch(var) {
case val:
}

program to load 𝑙𝑓 (i.e., our instrumented version) instead of 𝑙 . We
achieve this by modifying the RPATH [68] in the header of the
program executable to include the file path containing 𝑙𝑓 . For each
valid input 𝑖 to the program, we perform the following three: (i) First,
we execute the program with 𝑖 by enabling record-only mode in
𝑙𝑓 . This gives us RFList, i.e., the ordered list of FIPs reached during
execution. (ii) Next, we create an initial no-op FIList as a file that
contains |RFList| number of 0 bits. (iii) Finally, we continuously
run the program with the same 𝑖 for a predefined time. In each
run, we provide a new FIList generated through various mutation
strategies starting from the initial no-op FIList. In every run, we
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also keep track of any additional code covered in the program and
pick mutations that are likely to improve code coverage and trigger
bugs. When a crash occurs, we use our crash filtering mechanism
(as will be explained in Section 4.2.2) to check whether it is true
or false and provide positive or negative feedback to our FIList
generation mechanism.

a) Filtering Infeasible Crashes. Our crash filtering mechanism
tries to filter out crashes caused because fault injection violated
certain program invariants. An example of a false positive crash is
shown in Section 3.2.5. However, precisely identifying whether a
fault violated certain program invariants requires analyzing inter-
procedural data dependencies, which is a known hard problem [81].
Furthermore, we want the filtering mechanism to be fast because it
will be used in-line during testing iterations. We propose a light-
weight mechanism based on program traces. As shown in Figure 3,
there are three possible crash scenarios because of fault injection.
• Program Crashes (Scenario 1): In this scenario, the crash occurs
in the program code. We expect the program to handle all possi-
ble API error cases. However, a crash in program code because
of a fault injected in the library indicates that the program failed
to handle certain error cases of an API. Hence we consider these
crashes as true and resulting from a potential improper error
handling bug.

• Library Crashes (Scenario 2 and 3): In this case, the crash occurs
in the library code. As shown in Figure 3, there are two possible
scenarios (2 and 3) on how such crashes can occur. In Scenario
2, the most recent fault was injected in the same library con-
text as the crash. This likely indicates that the fault violated
certain invariants, and hence we consider these as false positives.
In Scenario 3, the most recent fault injection is in a different
context than the crash. Here, the execution flows through the
program, indicating that an API error is propagating through the
program. This most likely indicates that the program is passing
certain error data from an API call to another. Hence, we con-
sider these as true crashes. For instance, consider that we injected
a fault in fopen call, which returned NULL. Next, the program
calls fwrite using the return value without checking whether
it is NULL. However, fwrite expects the file pointer argument to
be non-NULL. This results in a crash (SIGSEGV) in fwrite (i.e.,
library), which is a true crash, revealing an API (i.e., fopen) error
handling bug in the program.

We use runtime stack trace as the context for fault injection and
crashes. We install a signal handler as part of our helper library, i.e.,
ferrlib. When a crash occurs, our signal handler gets triggered,
which uses the stack trace to check if the crash occurred in the
program or library code. If the crash occurs in library code, we
compare the stack trace of the most recent fault injection with
the crash’s stack trace. If they are the same, we consider the crash
as a false positive and discard it. The crash is considered true in
all other cases, and corresponding FIList will be stored for further
processing. While the crash filtering approach can miss out on
certain kinds of API misuses and hence is unsound. However, as
we show in Section 5.4, the intuition described above works well
for a large number of API misuse bugs.

4.2.3 FIList minimization and Root Cause Identification. The goal
here is to find the minimal combination of faults (i.e., a combination

Lib Lib LibProg Prog Prog

Scenario 1 Scenario 2 Scenario 3

API Call API Return

Fault InjectionCrash

Program 
Crashes 

Library Crashes 

Figure 3: Summary of different crash scenarios.

of 1 bits) in FIList that cause the crash and represent a possible root
cause of it. However, finding the minimal combination of 1 bits in
a given FIList is a combinatorial problem.

To handle this, we propose a delta debugging [7] technique based
on simulated annealing [11] to reduce FIList. The goal here is to
minimize (i.e.,reduce the number of 1 bits) a crash causing FIList,
which still causes the crash. Our technique is iterative, and it works
as follows:

In every iteration, given the current 𝐹𝐼𝐿𝑖𝑠𝑡 of length 𝑛 bits, we
create a reduced 𝐹𝐼𝐿𝑖𝑠𝑡𝑛𝑒𝑤 by setting each bit 𝑖 ∈ [1, 𝑛] based on
the following equation:

𝐹𝐼𝐿𝑖𝑠𝑡𝑛𝑒𝑤 (𝑖 ) =
{
1 if 𝐹𝐼𝐿𝑖𝑠𝑡 (𝑖 ) = 1 ∧ 𝑟𝑎𝑛𝑑 (0, 1) ≥ 𝐶

0 otherwise

Here, 𝑟𝑎𝑛𝑑 (0, 1) generates a random floating point value in [0, 1]
range, and 𝐶 represents the cooling factor and is also a floating
point value within the same range. The generated 𝐹𝐼𝐿𝑖𝑠𝑡𝑛𝑒𝑤 will be
of the same length 𝑛 as the previous 𝐹𝐼𝐿𝑖𝑠𝑡 . However, the number
of 1 bits in 𝐹𝐼𝐿𝑖𝑠𝑡𝑛𝑒𝑤 will be less than or equal to those in 𝐹𝐼𝐿𝑖𝑠𝑡 .
The cooling factor 𝐶 controls the reduction rate – a higher value
indicates a lesser reduction rate.

After every iteration, we check if the newly reduced 𝐹𝐼𝐿𝑖𝑠𝑡𝑛𝑒𝑤
still causes the crash. If yes, then 𝐹𝐼𝐿𝑖𝑠𝑡𝑛𝑒𝑤 is the newly reduced
𝐹𝐼𝐿𝑖𝑠𝑡 and will be used in subsequent iterations. We will also de-
crease the value of 𝐶 by 𝑠 (i.e., cooling schedule) and consequently
increase the reduction rate for subsequent iterations.

If 𝐹𝐼𝐿𝑖𝑠𝑡𝑛𝑒𝑤 does not cause the crash, we will retain the previous
𝐹𝐼𝐿𝑖𝑠𝑡 for subsequent iterations. We will also increase the value of
𝐶 by 𝑠 and reduce the reduction rate for subsequent iterations.

This process continues for 𝜏 iterations, after which the latest
𝐹𝐼𝐿𝑖𝑠𝑡 will be considered as the final reduced 𝐹𝐼𝐿𝑖𝑠𝑡 .
RC Identification. Given the minimized FIList, we use the stack
trace of fault injection points to identify the source location of
corresponding API calls in the program. These source locations
will be used to form our error report. For instance, “The errors in
APIx called at Line 23, and APIy called at Line 43 results in a buffer
overflow at Line 145.”. We wrote an additional helper script that
uses the stack trace and the kind of crash to identify the unique
bugs amongst the true crashes.

4.2.4 Implementation Details. We used Clang/LLVM compiler
framework version 12 to implement our analysis components. Our
library instrumentation is implemented as a LLVM pass. We get the
overall bitcode file of the target library by using wllvm [71], and
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run our instrumentation pass on the generated bitcode file. Our mu-
tation and testing techniques are implemented by modifying AFL++
using its post-processor support. Our helper library, ferrlib, is im-
plemented in C and provides various knobs to control different
aspects of fault injection. The crash filtering/root-cause identifi-
cation technique is implemented as a python module, which our
modified AFL++ will use during every crash. In total, our imple-
mentation involves 6.1K lines of C++ code and 5.3K lines of python
code.

5 EVALUATION
We pose the following research questions to guide our evaluation
of FuzzERR:

• RQ0: Effectivess of FIP Identification.How effectively does our
technique identify FIPs?

• RQ1: Effectiveness of FuzzERR. How effective is FuzzERR in
finding API error handling bugs? What is the contribution
of each of our techniques?

• RQ2: Impact of Code Coverage. Does coverage guidance im-
prove the effectiveness of FuzzERR? and does FuzzERR help
increase code coverage?

• RQ3: Comparison against the state-of-the-art.Howdoes FuzzERR
perform in comparison with the state-of-the-art techniques?

5.1 Dataset
Our goal is to collect a representative real-world dataset that enables
us to effectively evaluate different components of FuzzERR. Our
current implementation is based on Clang and consequently has
the following restrictions on the dataset. (i) The library must be
compilable using Clang. (ii) As with all dynamic techniques, these
programs should be easy to set up and run, i.e., not network servers
or other programs that require complex setup. We scrapped the
Debian package repository [28] and randomly picked 12 libraries
that satisfy our requirements. For each of the libraries, using reverse
search of apt-utils [37], we selected 1-3 programs that use API
functions in the corresponding library, which were easy to fuzz. In
total, we selected 20 programs. The first part of Table 4 shows the
list of libraries and corresponding programs along with source-level
statistics.

We also used APIMU4C [36], an existing API misuse bug dataset
that contains various synthetic bugs in 3 programs. However, the
dataset is targeted towards static tools and uses programs that are
hard to fuzz, especially network servers such as httpd. Out of the
three programs, only openssl was readily testable. The last row
of Table 4 shows the details of the program.

5.1.1 Collecting Programs’ Testcases. As explained in Section 4.2.2,
FuzzERR executes a program repeatedly with a fixed test case and
injects various faults in each run. We collect test cases for each
program by using the corresponding programs’ test suites. We
further augment these by running AFL++ for 24 hours on each
program with the initial inputs as seeds. The column Num.T of Ta-
ble 4 shows the total number of test cases collected for each of the
corresponding programs.

Table 4: Evaluation Dataset.

Libraries Programs

ID Name Size (Loc) APIs FIPs ID Name Size (Loc) Num. T

1 libelf 19.2K 25 151 1 eu-objdump 890 24

2 libpng 99K 55 97 2 contextfree 78.3K 24
3 optipng 5.7K 24

3 libxml2 332K 162 2,982 4 xmllint 3.9K 24
5 xgettext 84.4K 24

4 libzstd 112.5K 7 284 6 curl 178.8K 1
7 plocate 5.6K 1

5 libpoppler 143.7K 30 139 8 pdftotext 11.5K 24
9 apvlv 11.9K 24

6 libjpeg 85.7K 23 18
10 jpegoptim 2.5K 31
11 jp2a 2.7K 36
12 jpegqs 5K 19

7 libsqlite3 502K 56 381 13 lnav 178.9K 10

8 libavcodec 662.5K 10 6,778 14 shotdetect 2.1K 24

9 libavformat 225.4K 13 4,212 15 unpaper 4.6K 24

10 libavutil 71.7K 13 449 16 loudgain 2.6K 21

11 libcairo 234K 31 912 17 fntsample 1.1K 24
18 duc 14.3K 9

12 libfreetype 182.2K 19 534 19 logstalgia 18.8K 20
20 dvisvgm 234.9K 24

Total 2.669M 444 16,937 Total 848.4K 412

APIMU4C

ID Name Size (Loc) APIs FIPs ID Name Size (Loc) Num. T

13 libcrypto 182K 1065 3688 21 openssl 295k 3

5.2 Experimental Setup
We ran all our experiments on a AMD EPYC 7543P CPU machine
with 64 cores and 64GB memory. We run FuzzERR for 15 min-
utes on 30 cores in parallel mode, with instances sharing coverage.
Specifically, for a given program and a test case combination, we
run FuzzERR for 15 minutes on 30 cores. While it is recommended
that experiments related to fuzzing be run for 24 hours, we did a
preliminary experiment with more time on a subset of programs
but noticed that coverage did not improve after 15 minutes. This
is expected because we are only injecting faults on a fixed input.
Hence, we fuzz each (program, test case) combination for 15 min-
utes. We run our minimization technique with initial cooling factor
𝐶 = 0.1, reduction rate 𝑠 = 0.05, and run for 𝜏 = 50 iterations. These
values provide the best reduction rate, as shown in Section 5.4.1.

5.3 Effectiveness of FIPs Identification
For a given library, the first step in FuzzERR is FIPs identification.
As mentioned in Section 3.2.1, FIPs represent conditional state-
ments that control execution into error handling code. The FIPs
column in Table 4 shows the number of FIPs found in each of the
corresponding libraries. On average, our technique found 1,411 per
library with a total of 16,937.

To evaluate the accuracy of our technique, ideally, we need to
manually verify all the FIPs found by it. However, given the large
number of FIPs, we performed a random sampling. First, we ran-
domly picked 400 FIPs across all libraries and manually checked
whether each of these is a true FIP or not. Second, we randomly
picked 200 functions and manually identified all FIPs in it, and then
we checked if all of these FIPs were also found by our technique.
Table 5 shows the results of our evaluation. Our technique is able
to identify FIPs with a very high accuracy. This is expected because
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Table 5: Accuracy of FIPs identification.

Identified FIPs
True Positives False Positives

Randomly Selected
400 FIPs 95% 5%

FIPs Identified FIPs not Identified

Randomly Selected
200 functions 91% 9%

our FIP identification is precise as it is based on a strict set of error
markers (Section 4.2.1), which are mostly used in error-handling
code. However, there are few false positives (i.e., 5%). This is mainly
because few APIs use error markers to indicate functional cases. For
instance, return NULL to indicate the given array is already sorted.
Although an error marker, this does not indicate an error but a valid
return value and hence a false positive. However, as shown by the
small percentage, such cases are minimal.

As shown by the false negative column, our technique has false
negatives, i.e.,we missed identifying certain FIPs. The main reasons
for this are: (i) Conditional compilation: Few FIPs were guarded
by certain pre-processor directives that were not enabled in the
default build configuration of the corresponding programs. Conse-
quently, the pre-processor skipped these FIPs, although visible in
the source code. (ii) Value dependencies: In a few cases, identifying
error markers require value flow analysis [69]. For instance, in the
snippet if ((r = foo()) < 0) return r;, although, according to
our definition (Table 2), return r is an error marker as it is return-
ing a negative number. However, identifying this requires value
flow analysis, which we consider out of scope for our technique.

Missing FIPs does not greatly affect FuzzERR as it just reduces
fault injection points and does not necessarily eliminate fault in-
jection capability – as faults in an API can be injected through
multiple FIPs.

5.4 RQ1: Effectiveness of FuzzERR
In this section, we evaluate the overall effectiveness of FuzzERR.
The first group of columns in Table 7 shows the overall performance
of FuzzERR on all the programs in the dataset. We have omitted
programs (e.g., curl) on which FuzzERR did not find any bugs.

The column Filtered Crashes shows the number of false posi-
tive crashes automatically filtered out by our lightweight filtering
technique (Section 4.2.2). All programs have a large number of
filtered crashes, highlighting one of the important problems with
software fault injection. This also emphasizes the importance of
having an automated filtering mechanism. The large number of
filtered crashes is also because many mutated FILists will trigger
the same false positive crash. We plan to improve this as part of
our future work (Section 6).

Next, column Final Crashes shows crashes that were collected
at the end of testing. Most of the programs have relatively few
total crashes except for xgettext (ID: 5), logstalgia (ID: 19),
and dvisvgm (ID: 20), which contain an unusually large number
of crashes. However, the number of bugs corresponding to these
crashes is relatively small. This large number of crashes is because
a few API error bugs in these programs result in using uninitialized
variables. An example of such a bug is shown in Listing 1. De-
pending on the value of these uninitialized variables, the program

crashes at different locations, leading to a huge number of crashes
for relatively few unique bugs. This large number of filtered crashes
highlights one of the important problems with software fault injec-
tion and emphasizes the importance of having an automated filtering
mechanism.

It is interesting to see that there are false positives in final crashes.
This is because certain invariants across API calls are violated
by fault injection. However, our crash filtering mechanism treats
these as true crashes (Scenario 3 in Figure 3). But, these cases are
relatively small, i.e., ∼ 0.7% (42). Finally, our crash minimization
and root cause identification technique mapped these true crashes
to 31 bugs across various programs. These bugs represent unique
locations in the corresponding program where an API error was
wrongly handled.

As shown by the last row, out of the five bugs in API4MU
dataset, FuzzERR found only three bugs. The main reason for miss-
ing the other two bugs is missing error markers (Table 2). Specifi-
cally, a few APIs (with integer return type) use value 0 to indicate
an error (i.e., return 0). However, we do not consider this an error
marker and fail to identify FIPs and miss fault injections. We plan
to address this in our future work (Section 6).

5.4.1 Sensitivity Study of FIList Minimization. We performed a
sensitivity study to understand the performance of our technique
better. We vary each of our parameters, i.e.,𝐶 , 𝑠 , and 𝜏 , and measure
how the minimization effectiveness varies.

The Figure 4 shows the results of this experiment. Each line
represents the percentage of reduction when the corresponding
parameter value is varied, as shown by the legend. Ideally, we want
our technique to stabilize quickly (i.e., should take less number of
iterations to achieve high reduction). As shown by the red line,
increasing 𝑠 (i.e., cooling schedule) helps in quick convergence and
improves the reduction rate, but higher values rapidly modify the
cooling factor and consequently decrease the reduction rate. As
shown by the green line, similar behavior is exhibited by varying
𝐶 (i.e., cooling factor). However, as the blue line shows, increasing
the number of iterations (𝜏) will increase the reduction rate. But
increasing the number of iterations also increases the time. As
shown by the topmost point of the green line, the parameter values
that provide the highest reduction rate are 𝐶 = 0.1, 𝑠 = 0.05, and
𝜏 = 50.

5.4.2 Types of Bugs found by FuzzERR. The Table 6 shows the
categorization of bugs. Although most bugs (20, 64%) are NULL-ptr
dereferences, the rest (11, 36%) are severe security vulnerabilities
that can lead to arbitrary code execution. The Table 10 in Appendix
shows the complete list.

Examples. The Listing 2 and 3 shows examples of the bugs
found by FuzzERR. In Listing 2, the fault of API call to jpeg_ ⌋
read_scanlines at line 4 is not handled (i.e., the return value is
not checked). The failure of this API call does not initialize jpg,
which is eventually used to compute y (line 16). A negative value
of y results in an infinite loop (line 20) and, consequently, a buffer
overwrite at line 23.

The Listing 3 shows a bug resulting from the Scenario 3 category
crash (Figure 3). Here, similar to the previous example, the fault
of API call to avformat_write_header at line 6 is not handled (i.e.,
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Figure 4: The impact of our minimization parameters on the FIList
minimization averaged across 150 crashes.

Table 6: Categorization of bugs found by FuzzERR.

Bug Type Num. of Bugs

Heap Buffer Overread 2

NULL-ptr dereference 20

Overallocation due to integer overflow 2

Floating Point Exception 1

Segmentation Fault 1

Use After Free 5

Total 31

the return value is not checked). This will cause out_ctx to be
uninitialized. Subsequently resulting in NULL deference at line 21.

5.4.3 Responsible Disclosure. We reported these to the maintainers
of the corresponding applications along with patches for 28 bugs,
out of which 20 are already accepted. We are still working on the
patches for the rest (3) of the bugs, as they require understanding
application logic to gracefully handle API failures.

5.5 RQ2: Impact of Fault Injection on Code
Coverage

To study the effect of coverage guidance in fault injection, we con-
figured FuzzERR for random fault injection, i.e., the FIList will be
generated randomly in every iteration (𝐹𝑢𝑧𝑧𝐸𝑅𝑅𝑟𝑎𝑛𝑑 ). We tested
on 𝐹𝑢𝑧𝑧𝐸𝑅𝑅𝑟𝑎𝑛𝑑 on four programs of varying sizes and repeated
the experiment multiple times. These programs were selected be-
cause they used the libraries covering characteristic representative
functions (pdf, audio, images). 𝐹𝑢𝑧𝑧𝐸𝑅𝑅𝑟𝑎𝑛𝑑 could identify only
2 out of 7 API Misuse bugs identified by FuzzERR. This shows
that coverage-guided considerably contributes to the effectiveness
of FuzzERR.

As mentioned in Section 4.2.2, we run FuzzERR for each program
and a test case combination. We repeatedly run the program with
the same test case, but different faults will be injected into the
target library (through FIList). For each test case, we measured the
amount of additional code covered because of our fault injection.

Table 7: Performance of FuzzERR in comparison with AFL++ (𝐹𝐿)
and FairFuzz (𝐹𝐹 ).

Prog
Id

FuzzERR Performance
Bugs also
found by

Filtered
Crashes

Final Crashes Unique
Bugs FL FFFalse True Total

5 25.68K 10 1,099 1,109 2 0 0

9 11.04K 0 106 106 1 0 0

10 4.18K 3 20 23 1 1 0

11 58.27K 0 2 2 1 0 0

12 0 0 2 2 1 0 0

14 55.65K 4 35 39 11 1 0

15 8.55K 3 27 30 3 0 0

16 215.68K 3 42 45 3 0 0

19 7.61K 5 1,955 1,960 1 1 0

20 11.59K 7 2,334 2,341 2 1 1

21 7.5K 7 3 10 3/5 0 0

Total 673.79K 54 5,838 5,892 34 3 1

The Figure 5 displays a box plot of the additional code covered by
various test cases for programs that FuzzERR has detected bugs.

Except for a couple of programs (i.e., ID: 10 and 11), the additional
code covered because of fault injection is relatively less (≤ 6%). But
still FuzzERR was able to find bugs in these programs. This shows
that fault injection in libraries does not necessarily improve program
code coverage but helps in exploring interesting program states, as
demonstrated by the several bugs found by FuzzERR. An example
of this can be seen in Listing 3. Here, fault injection did not cover
additional code but explored an interesting program state by not
initializing out_ctx.
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Figure 5: Additional code covered because of fault injection
by FuzzERR.

5.6 RQ3: Comparative Evaluation
We selected the following state-of-the-art techniques for our com-
parative evaluation.
• AFL++ [26] (𝐹𝐿): This is a re-engineered fork of the popular
coverage-guided fuzzer AFL [79]. Furthermore, AFL++ incor-
porates techniques from several other fuzzing tools, such as
REDQUEEN [8], AFLSmart [62], and MOPT [50].

• FairFuzz [43] (𝐹𝐹 ): This is a fuzzing tool that uses novel muta-
tion techniques to generate inputs effective at exploring error
handling code.

• Fifuzz [38]: This is a fuzzing tool that uses a context-sensitive
SFI approach, in order to cover error handling code in different
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Listing 2 A real bug found by FuzzERR in jp2a because of incorrect
handling of jpeg_read_scanlines API return value.
1 // file: jp2a/src/image.c
2 // ----------------------
3 // A fault in this API does not initialize jpg.
4 � jpeg_read_scanlines(&jpg, buffer, 1);
5 // this uninitialized jpg is passed as argument
6 process_scanline_jpeg(&jpg, buffer[0], &image);
7
8 void
9 process_scanline_jpeg(
10 const struct jpeg_decompress_struct *jpg,
11 const JSAMPLE* scanline,
12 Image* i
13 ){
14 ...
15 // y becomes negative since jpg->output_scanline was 0
16 const int y = ROUND(i->resize_y *
17 (float) (jpg->output_scanline-1) );
18 ...
19 // loops infinitely since y is negative
20 while (lasty <= y) {
21 ...
22 // Buffer overwrite of pixel.
23 q pixel[x] += adds>1 ? v / (float) adds : v;
24 ...
25 }
26 ...
27 }

Listing 3 A NULL pointer dereference bug found by FuzzERR in unpaper
because of incorrect handling of avformat_write_header API return
value.
1 // file: unpaper/file.c
2 // --------------------
3 AVFormatContext *out_ctx;
4 ...
5 // A fault in this API does not initialize out_ctx.
6 � avformat_write_header(out_ctx, NULL);
7 ...
8 // flow continues with the out_ctx uninitialized
9 av_write_frame(out_ctx, &pkt);
10 // this function internally calls other functions,
11 // which finally call compute_muxer_pkt_fields
12 ....· compute_muxer_pkt_fields(out_ctx, st, &pkt)
13 // file: ffmpeg/libavformat/mux.c
14 // ------------------------------
15 static int
16 compute_muxer_pkt_fields(
17 AVFormatContext *s, AVStream *st, AVPacket *pkt){
18 ...
19 // st->internal->priv_pts is derived from s and
20 // it will be NULL.
21 q pkt->dts = st->internal->priv_pts->val;
22 ...
23 }

contexts, with the aim of finding bugs in error handling code
with complicated contexts.

These tools represent the state-of-the-art in two categories – first,
tools that aim to increase code coverage by exploring rare branches
(AFL++ and FairFuzz) and second, tools to increase code coverage
by directing execution towards error handling code (Fifuzz). As
suggested by the recent work [41], we tested each program for 24
hours to normalize the effects of randomness.

5.6.1 Comparison withAFL++ and FairFuzz. The last two columns
of Table 7 show this experiment’s results on programs that FuzzERR
has detected bugs. AFL++ found 3 bugs of those found by FuzzERR,
whereas FairFuzz found only 1 bug. On APIMU4C dataset, neither
AFL++, nor FairFuzz found bugs. This is expected because the
above tools are coverage guided and focus on improving the code
coverage. However, the bugs found by FuzzERR require a thorough

Table 8: Performance of FuzzERR in comparison with FIFUZZ.

Prog Id
Bugs Found by

FIFUZZ
Crashes

FuzzERR FIFUZZ False True TotalExclusive Total Exclusive Total

10 1 1 0 0 9 0 9

11 1 1 0 0 0 0 0

12 1 2 3 4 0 4 4

15 3 3 1 1 0 10 10

16 1 3 0 2 20 5 25

21 0 3 0 3 159 9 168

Total 7 13 4 10 188 28 216

state exploration rather than covering additional code (as shown
in Figure 5).

5.6.2 Comparison with Fifuzz. We also compared FuzzERR with
Fifuzz [38], a recent tool that also uses SFI to test the error han-
dling code of applications. We want to emphasize that Fifuzz is
not designed to find API misuse bugs but to improve code coverage
by forcefully executing error-handling code. As a consequence of
this, Fifuzz might find API error-handling bugs. Unfortunately,
the tool binary or its source code is not available, and we also
failed to get any response from the authors. We re-implemented
Fifuzz by following instructions from the paper. As explained in
the original paper [38], Fifuzz error point detection is specialized
for C programs. To ensure a fair comparison, we ran Fifuzz only
on C programs (as described in Sec 8 of the original paper [38])
and ran Fifuzz for 24 hours on each application (as suggested
in 5.3 of the original paper [38]). The Table 8 shows the results
of comparing FuzzERR with Fifuzz on only C programs. In to-
tal, FuzzERR found thirteen bugs, three more than Fifuzz, and
interestingly, FuzzERR exclusively found seven out of ten bugs.
The Listing 3 shows a bug exclusively detected by FuzzERR but
not Fifuzz. However, Fifuzz also exclusively found four bugs that
were missed by FuzzERR. We found that none of these bugs are
because of improper API error handling but rather in the clean-up
code. Furthermore, on Prog 16, Fifuzz resulted in 20 (80%) false
positive crashes, which required considerable manual effort to filter
them out. On APIMU4C dataset (Prog Id 21), Fifuzz was able to
find all three found by FuzzERR. However, Fifuzz resulted in 159
(94%) false positive crashes. Table 9 shows the coverage obtained
by FuzzERR and Fifuzz in these programs. The coverage for Fifuzz
is over a run of 24 hours, whereas the coverage for FuzzERR is over
a run of 6 hours (as mentioned in Section 5.2, increasing the time
does not affect coverage). Despite the lower code coverage obtained
by FuzzERR, it could identify more bugs than Fifuzz, further con-
firming our observations in Section 5.5. This shows that FuzzERR
is more effective at exploring error handling code and triggering
API misuse bugs.

In summary, FuzzERR is more effective than the state-of-the-art
tools in finding API error-handling bugs by exploring interesting
program states through fault injection.

6 LIMITATIONS AND FUTUREWORK
Wepresent the limitations of the current implementation of FuzzERR,
along with our future plans to address them:
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Table 9: Comparision of coverage obtained by FIFUZZ and FuzzERR

Prog Id FIFUZZ coverage
(24 hrs)

FuzzERR coverage
(6 hours)

10 28.76% 26.71%
11 23.22% 20.72%
12 11.13% 7.69%
15 7.04% 34.98%
16 11.79% 5.65%

• Compiler Dependency. We require the target library to be compil-
able with Clang as our implementation (Section 4.2.4) is based
on it. Few libraries, such as glibc, require considerable effort to
be compilable with Clang [54]. Consequently, FuzzERR cannot
be used to find the error handling bugs of corresponding APIs.

• Dynamic Analysis and Testcase Requirements. FuzzERR benefits
from the availability of an exhaustive set of test cases. Generating
effective test cases is becoming relatively easy with the advances
in automated testing techniques. We envision that FuzzERR will
be used as an additional step on top of existing automated testing
techniques to effectively explore API error handling code.

• False Negatives. The current design choices of FuzzERR are fo-
cused on precision and can potentially miss certain bugs, result-
ing in false negatives. There are two cases where this can happen.
(I) We use a pre-defined set of pre-defined error markers to iden-
tify FIPs. These markers may be missing in certain libraries. (ii)
Our filtering mechanism uses stack traces to check that the fault
injection point is different from the crash point for library crashes
and discards them (if same) ( Section 4.2.2). However, there can
be cases when the stack trace is the same, even when both are
different (e.g., loops). As part of our future work, we will improve
our FIP identification using learning techniques and extend our
filtering mechanism to perform additional post-processing.

7 RELATEDWORK
Software Fault Injection (SFI). SFI techniques [22, 27, 80] are
shown to be very effective in testing error-handling code. Bai et
al., [9, 10] developed techniques to inject faults into device handling
functions while testing device drivers to detect bugs in error han-
dling code. LFI [52] is one of the first works that try to inject faults
in library functions and see how the program behaves. However,
LFI mainly focuses on returning the failure return value without
capturing the entire error semantics of library functions. e.g., clear-
ing or freeing the pointers passed through arguments. This can
lead to false positives or infeasible crashes. FuzzERR avoids this by
forcing execution to error blocks, thereby leveraging existing error
semantics.

False positives or reaching infeasible states [40, 55] is one of the
known problems with SFI. Another problem with existing SFI tech-
niques is location-based injection rather than execution based. Re-
cent work, Fifuzz [38] tries to avoid this by using context-sensitive
fault injection, wherein they use the combination of error location
information along with the execution context as a fault injection
point. FuzzERR is more precise, and we use a filtering mechanism
to avoid any resulting false positive crashes. Furthermore, as shown
in Table 8, FuzzERR is more effective at finding API error-handling
bugs than FIFUZZ. Software faults can also be mimicked by directly

mutating the program, commonly called mutation analysis [4] or
mutation testing. There exist techniques, such as SlowCoach [20],
to generate mutations [59]. FuzzERR is similar in principle to mu-
tation testing, where targeted mutations are performed in libraries.
API Misuse Detection. Most of the work [36] on API misuse
bug detection is based on static approaches. Some of these tech-
niques [17, 31, 35] check for violations of API usage rules. But
techniques to automatically generate API usage rules [3, 13, 42,
45, 47, 57, 60] are hard to scale and require a large corpus of valid
API uses. There are other techniques based on Anomaly Detection
(AD) [16, 24]. The recent work ApiSan [78] encodes common pat-
terns as semantic beliefs and looks for violations of these beliefs.
There are also machine learning-based techniques [14, 46, 48, 61,
72, 74, 75], such as the recent work FICS [6], that cluster API usage
patterns and consider minority clusters as API misuses. These static
automated techniques have a lot of false positives. For instance, Ar-
bitrar [44], ApiSan [78] and FICS [6] have false positive rates of
51.5%, 87.9% and 88%, respectively. These techniques are impractical
for real use [12, 21].
Fuzzing. Generational fuzzers [19, 33, 73, 76] require a specifi-
cation, and inputs will be generated based on the specification.
These techniques are helpful for testing programs that expect well-
structure input, such as compilers [19], interpreters [73] and device
drivers [23]. Mutational fuzzers [8, 15, 26, 29, 34, 43, 63, 77] gener-
ate inputs by performing mutations on a given set of seed inputs.
There are other techniques, such as Driller [67] and Angora [18],
that use hybrid approaches of combining mutations with symbolic
execution.

Most of the existing fuzzing techniques use code coverage [66]
as the feedback. In our work, we use an existing coverage-guided
mutational fuzzer, i.e., AFL++ [26], as our base and use it to direct
fault injection.

8 CONCLUSION
We present FuzzERR, a generic dynamic analysis approach to detect
API error handling bugs based on coverage-guided software fault
injection. We inject faults into APIs by forcing execution along
error paths and then observe how the program under test handles
these failures. We also filter out false positives by using a light-
weight technique based on program traces. Our evaluation shows
that FuzzERR found 31 new and previously unknown bugs resulting
from incorrect handling of API errors, significantly outperforming
the state-of-the-art.
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Table 10: List of bugs identified by FuzzERR

S.No. Library Program Type Source File Line
Number Remarks

1 libjpeg jpegqs Null ptr deref quantsmooth.c 530 Return value of jpeg_read_coefficients() not checked. It can be NULL in certain conditions.

2 libxml2 xgettext Null ptr deref locating-rule.c 92 Return value of xmlGetProp() not checked. It can be NULL in certain conditions.

3 libxml2 xgettext Null ptr deref locating-rule.c 313 Return value of xmlDocGetRootElement() not checked. It can be NULL in certain conditions.

4 libavutil loudgain Null ptr deref scan.c 203 Return value of swr_alloc() not checked. It can be NULL in certain conditions.

5 libavutil loudgain Null ptr deref scan.c 442 Return value of av_malloc() not checked. It can be NULL in certain conditions.

6 libavutil loudgain
overallocation
due to integer
overflow

scan.c 438
Return value of av_samples_get_buffer_size() not checked (negative error code in case of failure).
This is passed as an argument to av_malloc(). This value can be negative in case of error, which
would lead to overallocation.

7 libfreetype dvisvgm use-after-free FontEngine.cpp 224

Return value of FT_Load_Glyph() not checked, leading to use-after-free bugs in certain conditions.
8 libfreetype dvisvgm use-after-free FontEngine.cpp 233
9 libfreetype dvisvgm use-after-free FontEngine.cpp 244
10 libfreetype dvisvgm use-after-free FontEngine.cpp 253
11 libfreetype dvisvgm use-after-free FontEngine.cpp 262

12 libfreetype dvisvgm Null ptr deref Font.cpp 197 Return value of FontEngine::setFont() not checked (false on failure). In case its unsuccessful,
it can lead to a null-pointer-dereference later in the code.13 libfreetype dvisvgm Null ptr deref Font.cpp 239

14 libfreetype logstalgia Null ptr deref fxfont.cpp 81 Return value of FT_Glyph_To_Bitmap() is not checked (non-zero return on error), which can
lead to null-pointer-dereference later.

15 libavcodec shotdetect Null ptr deref main.cc 216 Retrun value of film::process() is not checked (negative return on error). A failure in
film::process() can lead to a null-pointer-dereference later.

16 libavcodec shotdetect Null ptr deref graph.cpp 300 data.size() can be 0 in certain conditions, which would leade to integer underflow in the loop
condition. This would eventually lead to a null-ptr-dereference.

17 libavcodec shotdetect Null ptr deref film.cpp 295 Return value of av_frame_alloc() not checked, which will lead to null-ptr-dereference later.

18 libavcodec shotdetect Null ptr deref film.cpp 296 Return value of av_frame_alloc() not checked, which will lead to null-ptr-dereference later.

19 libavcodec shotdetect Null ptr deref film.cpp 297 Return value of av_frame_alloc() not checked, which will lead to null-ptr-dereference later.

20 libavcodec shotdetect
overallocation
due to integer
overflow

film.cpp 302 Return value of avpicture_get_size() not checked (non-zero return on error). This can lead to
integer underflow in the argument passed to malloc() later.

21 libavcodec shotdetect Null ptr deref film.cpp 304 Return value of malloc() is not checked, which can lead to null-ptr-dereference later.22 libavcodec shotdetect Null ptr deref film.cpp 305

23 libavcodec shotdetect Null ptr deref film.cpp 310 Return value of avpicture_fill() not checked (negative return on error). Failure in avpicture_fill()
can later lead to null-ptr-dereference.24 libavcodec shotdetect Null ptr deref film.cpp 312

25 libavcodec shotdetect Null ptr Deref film.cpp 346 Return value of avcodec_decode_video2() not checked (negative return on error). Failure in
avpicture_fill() can later lead to null-ptr-dereference.

26 libjpeg jp2a Heap overflow image.c 705 Return value of jpeg_read_scanlines() not checked. In certain conditions, this can lead to an
integer overflow, which eventually leads to a heap overflow (in process_scanline_jpeg()).

27 libavformat unpaper Null ptr deref file.c 228*
Return value of avformat_write_header() is not checked and context is passed onto
av_write_frame(). This can lead to a null-ptr-dereference in compute_muxer_pkt_fields() inside
libavformat itself, at libavformat/mux.c:580.

28 libavformat unpaper FPE file.c 228*
Return value of avformat_write_header() is not checked and context is passed onto
av_write_frame(). The context can be in a state that is not properly intitialized. This can
lead to a FPE in frac_add() in libavformat itself, at libavformat/mux.c:84.

29 libavformat unpaper SEGV file.c 43 Return value of avformat_find_stream_info() not checked. This can lead to a segmentation
fault later.

30 libpoppler apvlv Heap overflow ApvlvDoc.cc 2203
Return value of library API function is checked. However the return value of application’s
own function that wraps the call to the api is not checked. Under certain conditions, this
can lead to heap buffer overflow.

31 libjpeg jpegoptim Null ptr deref jpegoptim.c 711 Return value of jpeg_read_cofficients() not checked. This can lead to null-ptr-dereference later.
* Depending on the location and context at the time of fault, the same API misuse causes different faults in the library.
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