
LEMIX: Enabling Testing of Embedded Applications as Linux Applications

Sai Ritvik Tanksalkar
Purdue University

Siddharth Muralee
Purdue University

Srihari Danduri
Purdue University

Paschal Amusuo
Purdue University

Antonio Bianchi
Purdue University

James C. Davis
Purdue University

Aravind Kumar Machiry
Purdue University

Abstract
Dynamic analysis, through rehosting, is an important capa-

bility for security assessment in embedded systems software.
Existing rehosting techniques aim to provide high-fidelity
execution by accurately emulating hardware and peripheral
interactions. However, these techniques face challenges in
adoption due to the increasing number of available periph-
erals and the complexities involved in designing emulation
models for diverse hardware. Additionally, contrary to the
prevailing belief that guides existing works, our analysis of
reported bugs shows that high-fidelity execution is not re-
quired to expose most bugs in embedded software. Our key
hypothesis is that security vulnerabilities are more likely to
arise at higher abstraction levels.

To substantiate our hypothesis, we introduce LEMIX, a
framework enabling dynamic analysis of embedded applica-
tions by rehosting them as x86 Linux applications decoupled
from hardware dependencies. Enabling embedded applica-
tions to run natively on Linux facilitates security analysis
using available techniques and takes advantage of the pow-
erful hardware available on the Linux platform for higher
testing throughput. We develop various techniques to address
the challenges involved in converting embedded applications
to Linux applications. We evaluated LEMIX on 18 real-world
embedded applications across four RTOSes and found 21 new
bugs, in 12 of the applications and all 4 of the RTOS kernels.
We report that LEMIX is superior to existing state-of-the-art
techniques both in terms of code coverage (∼2X more cover-
age) and bug detection (18 more bugs).

1 Introduction

Society’s dependence on low-powered Microcontroller Unit
(MCU) based devices (e.g., IoT devices), has significantly in-
creased, controlling various aspects of our daily lives, includ-
ing homes [1], transportation [93], traffic management [83],
and the distribution of vital resources like food [64] and
power [61]. The adoption of these devices has seen rapid

and extensive growth, with an estimated count of over 50 bil-
lion devices by the end of 2020 [27]. Vulnerabilities in the
software controlling these devices have far-reaching conse-
quences [2, 99] due to the pervasive and interconnected nature
of these devices, as exemplified by the infamous Mirai bot-
net [54] and more recent URGENT/11 [94] vulnerabilities. It
is important to detect such vulnerabilities proactively. Various
works [100] show that dynamic analysis, especially fuzzing
[53], is effective at vulnerability detection in web and desk-
top software. However, the dynamic analysis of embedded
systems [28] is challenging [57, 97] because of the close inter-
action with hardware and the lack of Operating System (OS)
abstractions. The lack of robust and readily available dynamic
analysis tools (comparable to those for x86 systems) further
imposes engineering challenges.

To mitigate this, rehosting [22] has emerged as an effective
technique. By decoupling firmware from its hardware depen-
dencies and enabling execution within an emulated environ-
ment, rehosting facilitates deeper exploration and analysis of
embedded software without the constraints of physical hard-
ware. Existing rehosting techniques mainly focus on achiev-
ing high-fidelity execution without hardware and focus on
modeling peripheral interactions through manually created
models [15], pattern-based model generation [23], or mod-
els built using machine learning techniques [84, 32]. They
depend on the availability of an MCU-specific Instruction
Set Architecture (ISA) emulator and require considerable en-
gineering effort [98] to configure different peripherals. We
hypothesize that this high-fidelity execution is not required
for vulnerability detection, and a coarse approximation of
program behavior is sufficient. We validate our hypothesis
through a preliminary analysis of previously reported bugs
(§ 3.2.2). We find that most bugs arise in higher-level software,
not in architecture-specific code like inline assembly.

Starting from this observation, in this paper, we present
LEMIX, a novel approach to rehost embedded applications as
Linux applications (for x86), which we call LEAPPs, with the
goal of improving vulnerability detection capability in embed-
ded software with minimal engineering effort. LEMIX enables

the use of dynamic analysis techniques readily available for
Linux applications, such as sanitizers [77] on embedded ap-
plications. However, converting embedded applications to
x86 Linux applications and enabling dynamic analysis poses
challenges, i.e., preserving execution semantics, retargeting to
different ISA, and handling peripheral interactions. We main-
tain execution semantics by leveraging the Linux Portable
Layer, which comes as a part of most of the prevalent RTOSes
(§ 4.1.1). We use an interactive refactoring approach (§ 4.1.2)
to handle ISA retargeting. We tackle peripheral interactions
(§ 4.1.4) by first identifying MMIO addresses through con-
stant address analysis and using runtime instrumentation to
feed peripheral data through standard input, thereby eliminat-
ing the need for precise peripheral models. We also weaken
peripheral state-dependent conditions to improve code cov-
erage, which is often limited by these conditions that are
difficult for a fuzzer to bypass. To further improve testing, we
apply a function-level fuzzing approach based on available
research [48, 60] that directly invokes the target function with
appropriate arguments. Taken together, these design choices
form a novel rehosting methodology that enables efficient
bug discovery in embedded applications without sacrificing
practical effectiveness, as demonstrated by our findings.

We evaluated LEMIX on 18 real-world embedded appli-
cations ranging across four RTOSes, including FreeRTOS,
Nuttx, Zephyr, and Threadx. These RTOSes support major
semiconductor platforms like Qualcomm, NXP, Nordic [76,
88, 102, 67] etc. We show that our approach can success-
fully convert applications to LEAPP with only a little manual
effort. We tested LEAPPs by using whole-program fuzzing
and function-level fuzzing and found 21 previously unknown
bugs with 14 out of 18 applications effected by these bugs.
Our ablation study shows that each of our techniques sig-
nificantly contribute to the overall effectiveness of LEMIX.
Finally, comparative evaluation against the state-of-the-art
shows that LEMIX is superior at improving code coverage
(∼2X more coverage) and bug detection (18 additional bugs).

In summary, we contribute:

• We propose LEMIX, an extensible framework to rehost
embedded applications as x86 Linux applications (i.e.,
LEAPPs) without emulation or physical devices.

• We design various analysis techniques to tackle challenges
in maintaining execution semantics, retargeting, and han-
dling peripheral interactions. We also design techniques to
improve the testing and code-coverage of LEAPPs.

• We evaluated LEMIX on 18 embedded applications across
four Real Time Operating Systems (RTOSes) and found
21 previously unknown bugs, most of which are confirmed
and fixed by the corresponding vendors.

• Our comparative evaluation against state-of-the-art tech-
niques shows that LEMIX is superior in code coverage and
bug detection.

Table 1: Our analysis of the CVEs from the Rust4Embedded
survey [72], [79] indicates that 60 out of 71 (85%) require
low-fidelity execution. See Table 8 for details.

RTOS Low Fidelity High Fidelity

FreeRTOS 20 2
Zephyr 26 7
RIOT 14 2

Total 60 (85%) 11 (15%)

2 Background and Threat Model

We provide the necessary background of our target embedded
systems (§ 2.1) and information about their software architec-
ture (§ 2.2), along with our threat model (§ 2.3).

2.1 Type-2 Embedded Systems
Embedded systems perform a designated task with custom-
designed software and hardware. Following previous sys-
tematization works [57, 22], these systems can be catego-
rized into three types: Type-1 systems use general purpose
OSs retrofitted for embedded systems, e.g., Embedded Linux;
Type-2 systems use an RTOS, a class of OS that provides tim-
ing guarantees, minimal hardware abstraction, and prioritizes
tasks to meet strict timing constraints critical for real-time
applications, and Type-3 systems use no OS abstractions.

In this work, we focus on Type-2 systems, which consist
of an RTOS combined with application code. Type-2 designs
are common in safety-critical scenarios, supported by the
availability of safety-certified RTOSes [96, 73, 92], which
comply with guidelines like those set by MISRA [7] and
provide real-time guarantees [87]. As shown in Figure 1,
they have a layered design [81] and decouple the application
components from the underlying RTOS kernel. Most RTOSes
modularize their code base to capture all the hardware-specific
functionalities within a portability layer specialized per MCU.

2.2 Portability Layers
As shown in Figure 1, RTOSes depend on a portable archi-
tecture to enable easy support for the diverse set of avail-
able CPU architectures and boards. Specifically, the portable
layer provides header files that define interfaces between the
hardware-agnostic kernel and the various MCU-specific ports.
The RTOS kernel above the portable layer contains hardware-
agnostic code. The hardware-specific implementations, con-
taining interactions with specific MCU registers, memory
regions, and peripherals, are contained in MCU ports, which
are compiled and linked with the kernel. As a result of this,
an embedded application designed for a specific CPU archi-
tecture can run on a different CPU architecture by replacing
the current MCU port with that of the new architecture [40].

RTOS / Library Third
party
SDKPortable Layer

Pe
rip

he
ra

ls
A

pp
lic

at
io

n

C
om

po
ne

nt
s

CLK GPIO SPI

Essential Non-Essential

M
C

U
s

Task1 Task2 TasknTask3

RTOS / Library Third
party
SDK

Linux Portable Layer (LPL)

Task1 Task2 TasknTask3

D
is

pa
tc

he
r T

as
k

Handler Invocation

Linux Application

Standard
Input

Retargeted (compiled) for x86

MMIO Accesses modeled as Reads from Standard Input

LEMIX

Type-2 Embedded Application

Adding Linux Portable Layer.
(Once for each RTOS)

Modeling MMIO Accesses.
(Runtime)

Retargeting for different ISA.
(Compile time)

1

2

3

Automated Process

Developer Assisted Semi
Automated Process

Figure 1: Architecture of a Type-2 Embedded System and overview of LEMIX approach to convert it to a Linux Application.

To improve testability and aid embedded firmware develop-
ment, many RTOSes also provide ports for various host oper-
ating systems such as Linux and Windows. We refer to these
ports as the Native Portable Layer (NPL) and this includes
the Linux Portable Layer (LPL) and the Windows Portable
Layer (WPL). These native ports allow embedded applica-
tions built on these RTOSes to be run on respective desktop
operating systems as native applications. Native ports use
host-provided implementation to simulate various embedded
functionalities. For example, the Linux Portable Layer (LPL)
of the FreeRTOS [25] and Zephyr [103] operating systems
use Linux pthreads to simulate tasks, signals to simulate in-
terrupts, and timers to simulate clocks in the application. We
provide details in Appendix of our extended report [90].

2.3 Threat Model

Embedded applications receive inputs from a variety of
sources, such as network interfaces, external storage devices
(e.g., SD cards, USB), user-provided inputs via buttons or
screens, and peripherals accessed through Memory Mapped
I/O (MMIO). In our threat model, we assume that the attacker
can control all inputs to the embedded application, including
those coming from peripherals accessed via MMIO accesses.
Specifically, all values through MMIO reads are fully con-
trolled by the attacker. The goal of the attacker is to trigger
vulnerabilities in the embedded application.

This threat model is reasonable from the Defense in Depth
perspective [58] and has been used in several other works [5,
49, 42]. Also, from a software resilience standpoint, it is im-
portant to reasonably validate data received from external
entities (such as peripherals) to avoid arbitrary failures. For
instance, in Listing 15 (Extended Report [90]), blindly trust-

ing the data from MMIO GPIOx->LATCH (Line 2) could result in
an infinite loop (Line 23), causing DoS.

3 Motivation

Dynamic analysis, such as fuzzing, is shown to be an effective
technique for vulnerability detection [53]. Scalable dynamic
analysis of Type-2 embedded applications requires an instru-
mentation capability (e.g., through an emulator) and hardware
independence. One of the most popular approaches is rehost-
ing [22], where an unmodified embedded firmware will be
executed or rehosted in a virtualized environment. One of
the main challenges in rehosting is to achieve execution fi-
delity. The existing rehosting techniques can be categorized
according to the developer/analyst effort and execution fi-
delity as shown in Figure 2. Ideally, we want to achieve the
highest execution fidelity with the least analyst effort in a
hardware-independent manner — a known hard problem and
the holy grail of rehosting [22]. Most of the recent rehosting
techniques try to achieve high execution fidelity and mainly
focus on automated techniques to precisely model peripheral
interactions — which are hard to generalize across periph-
erals. Furthermore and more importantly, such high-fidelity
execution may not be needed to detect most vulnerabilities.

3.1 Execution Fidelity (EF)
Adapting1 the categorization from Wright et al. [98], Exe-
cution Fidelity (EF) in embedded systems can be broadly
grouped into four categories:

1We build upon the broader categorization of Wright et al. by introducing
more granular taxonomies, enabling a more detailed assessment of execution
fidelity specifically in the context of embedded systems.

1 int32_t tud_msc_read10_cb(uint32_t lba, uint32_t offset,
2 void* buffer, uint32_t bufsize)
3 {
4 // out of ramdisk
5 if (lba >= DISK_BLOCK_NUM) {
6 return -1;
7 }
8 /* Attacker can offset to sensitive memory */
9 uint8_t const* addr = msc_disk[lba] + offset; ´

10 /* Controlled write to known memory
11 may cause undefined behavior */
12 memcpy(buffer, addr, bufsize); q

13 return (int32_t) bufsize;
14 }

Listing 1: Lack of bounds check on offset in tud_msc_read10_cb

allows out-of-bounds read from msc_disk[lba], potentially
leading to information disclosure or undefined behavior.

(1) Language Semantic Fidelity (S): The degree to which the
execution preserves the language semantics intended by the
programmer, e.g., control flow and data types.
(2) Assembly Execution Fidelity (A): The correctness of ex-
ecuting assembly instructions which constitutes instruction-
level behavior and any deviations due to instrumentation, etc.
In contrast to S, which focuses on high-level program behav-
ior, A pertains to low-level execution behavior as specified by
the processor’s instruction set architecture (ISA).
(3) Peripheral Handling Fidelity (P): The extent to which
peripheral interactions (e.g., memory-mapped I/O) are accu-
rately modeled or handled during execution. While A ensures
correct instruction behavior, P focuses on the correctness of
effects on peripheral device interaction, requiring hardware
modeling beyond the instruction level.
(4) Clock Fidelity (C): The accuracy of timing behavior with
respect to real-time constraints such as instruction timing,
interrupts, system clock behavior, etc.

We define Execution Fidelity (EF) as < S,A,P,C >, where
each component is coarsely categorized as Low (L), Medium
(M) or High (H). While we adopt this discrete structure for
simplicity, finer gradations or even a continuous scale may of-
fer further insights and are left for future work. This definition
of EF also provides a way to categorize existing works. For
instance, hardware-in-the-loop approaches, such as AVATAR
[101], redirect all peripheral handling to the real board and
execute the embedded firmware on the emulator. The split
execution does not preserve the relative clock semantics be-
tween the emulator and actual hardware and only achieves
partial clock fidelity, i.e., C = M (Medium). The EF achieved
by these approaches can be specified as < H,H,H,M >.

3.2 Bug Manifestation Fidelity (BMF)
BMF is the minimum fidelity required to reach and observe

the effects of the bugs of interest. BMF varies according to
the type of bugs. For instance, to observe scheduling bugs, we
need an accurate clock fidelity, i.e., C, in addition to the other

components, depending on where the bug is. If scheduling
bugs do not involve assembly, we do not need A. We therefore
analyze known vulnerabilities in embedded software to under-
stand the BMF required for memory corruption vulnerabilities
(a common class of vulnerabilities). Specifically, which exe-
cution aspects out of S, A, P, C (§ 3.1) are required and which
of them can be approximated.

3.2.1 Empirical Data

We manually analyzed 84 publicly reported vulnerabilities
in C/C++ software taken from the recent work by Sharma
et al. [78] to identify what degree of fidelity is required to
manifest them. This included CVEs with available patch in-
formation from open-source RTOSes, i.e., FreeRTOS, Zephyr,
and RIOT. We considered only the common case of memory
corruption vulnerabilities, omitting categories such as weak
authentication and SQL injection. Memory corruption vulner-
abilities comprised 71 out of the 84 vulnerabilities.

For each CVE, we identified the target vulnerability and
affected function by manually analyzing the CVE description
and the corresponding patch. We then check if the vulner-
ability can be triggered with low-fidelity rehosting. Specif-
ically, we target vulnerabilities characterized by an EF of
< H,L,M,M >, as defined in § 3.1. We consider those that
meet all requirements to be triggerable with low-fidelity re-
hosting, else high fidelity is needed. Listing 8 (Appendix)
shows an example of a CVE requiring high-fidelity rehosting
and Listing 7 (Appendix) shows an example of a CVE requir-
ing low-fidelity. We summarize our results in Table 1. More
details can be found in Table 8 (Appendix). Our analysis is
further confirmed by recent work [91], which detected various
vulnerabilities through low-fidelity dynamic analysis.

3.2.2 BMF For Embedded System Software

Based on our empirical study § 3.2.1, the BMF required for
most of the memory corruption bugs is <H,L,M,M >, which
is what LEMIX targets. Following the definitions of Wright et
al. [98], BMF for most memory corruption vulnerabilities can
be approximated to module-level execution fidelity. Specif-
ically, we should be able to execute a module (i.e., a group
of functions) with enough fidelity to expose a bug. Listing 1
demonstrates a motivating example of a bug we discovered
in TinyUSB. The tud_msc_read10_cb function lacks bounds
checking on the offset parameter, allowing out-of-bounds
reads from the msc_disk array (at line 9), which can cause
potential information disclosure or even undefined behavior,
depending on how the buffer is further used. We do not need
a high-fidelity execution to detect the bug in Listing 1. We
just need to execute the function tud_msc_read10_cb and pass a
large number as offset. We also need the capability to detect
out-of-bound memory access (at line 9), which is challeng-
ing in embedded systems because of the lack of memory

[74][23]

[105][26]

[45][36]

[86][66]

[56][44]

[71]

[31]

[17]

[34]

[15]

[11]

[84]

[12]

SW Approaches
With No

Peripheral
Modeling

HW Dependent
Approaches

Abstract Model
of Application

SW Approaches
With Precise
Peripheral
Modeling

LEMIX
(BMF)

highleast Execution Fidelity

A
na

ly
st

/D
ev

el
op

er
E

ff
or

t

high

Figure 2: LEMIX in Contrast to Existing Rehosting Ap-
proaches.

protection mechanisms [57]. Although we do not require pre-
cise peripheral models to trigger the bug, achieving BMF or
module-level execution fidelity without them is challenging.
As mentioned in § 2.1, embedded applications are organized
into a set of tasks and use a real-time scheduler to trigger the
tasks. To execute the function tud_msc_read10_cb in Listing 1,
we need to ensure the task containing the function gets exe-
cuted, which further depends on the scheduler, which requires
precise models for the clock peripheral. Can we achieve BMF
without explicitly providing precise peripheral models? In
summary, we need the capability to execute embedded appli-
cation, handle MMIO accesses (i.e., provide data on reads
and ignore writes), and detect memory safety violations.

3.3 The Idea
Dynamic analysis challenges like execution environment and
detectability have been well studied for Linux applications
on standard ISAs (e.g., x86, x64), with many effective so-
lutions [18, 82, 9]. Prior work, such as AoT [41], extracts
components from complex systems (e.g., Linux kernel) into
testable user-space applications. Our goal is to convert embed-
ded applications into Linux applications to enable BMF and
make existing dynamic analysis techniques [52] applicable.
Srinivasan et al. recently showed this is feasible by manu-
ally converting three simple FREERTOS applications [85].
However, designing a generic technique involves tackling the
following challenges.

• (Ch1) Preserving Execution Semantics. Linux applica-
tions, by default, follow single-threaded execution. How-
ever, embedded applications (as explained in § 2.1) are
engineered in terms of event-driven tasks and are mul-
tithreaded [33]. Simply replacing RTOS files with their
POSIX equivalents (LPL) often leads to unintended er-
rors during integration. Incorporating a POSIX-compatible

RTOS requires a systematic and automated mechanism.
This involves more than just file replacements; it necessi-
tates careful adaptation to preserve the embedded system’s
original task-based and event-driven execution semantics.

• (Ch2) Retargeting to different ISAs. Though majorly
developed in C, embedded applications use various non-
standard and embedded toolchain-specific C features not
supported by traditional compilers for desktop ISAs, e.g.,
x86. The presence of inline ISA-specific assembly (e.g., of
ARM) further complicates retargeting (i.e., compiling) for
other ISAs. We need to have a mechanism to compile an
embedded application for common desktop ISAs.

• (Ch3) Handling Peripheral Interactions. Embedded sys-
tems directly interact with peripherals, mostly through a
dedicated set of MMIO addresses [68]. It is crucial to distin-
guish these MMIO addresses from regular memory accesses
because they correspond to physical hardware components,
and improper handling can lead to incorrect behavior.

4 LEMIX

We design LEMIX, an interactive framework enabling effec-
tive dynamic analysis of embedded applications by converting
them to Linux applications, which we call LEAPP. The nov-
elty of LEMIX lies in recognizing and harnessing the BMF
insight, i.e., rehosting with just enough execution fidelity to
keep most security bugs triggerable, thereby significantly re-
ducing the manual effort and complexity typically associated
with generalizing full system emulation. The right side of
Figure 1 shows the summary of our approach to tackling
the challenges (§ 3.3) in converting to LEAPP. The LEMIX
framework has two phases as illustrated in Figure 3. In Phase
1, we convert the given embedded application into LEAPP
using static analysis techniques and compiler instrumenta-
tion. We use an interactive approach to tackle certain complex
code idioms during retargeting. We also design instrumen-
tation techniques for LEAPPs to improve the effectiveness
of dynamic analysis, specifically random testing. In Phase
2, we focus on testing LEAPP. We support two modalities,
whole-program, and function-level testing, providing a holis-
tic testing infrastructure.

4.1 Phase 1: Analysis-Friendly LEAPP

This phase generates a dynamic analysis-friendly LEAPP
from a given embedded application and the target RTOS con-
figuration. This part tackles challenges (1-3) from § 3.3.

4.1.1 Handling execution semantics using LPL (Ch 1)

As explained in § 2.1, embedded applications rely on RTOS
functions for their execution semantics. For instance, an appli-
cation for FREERTOS uses xTaskCreate function to create a

Peripheral
Modeling and

Instrumentation

Dynamic
Analysis

Assistance
InstrumentationApplication

Retargeting

NPL
Retargetting

O
pp

ur
tu

ni
tic

Sy
m

bo
l

R
es

ol
ut

io
n

Sec. 4.1.3

Sec. 4.1.1

Sec. 4.1.2

Whole
Program
Fuzzing

Function
Level

Fuzzing

LLVM Bitcode
for LeApp

LeApp with
MMIO

Handling LeApp

R
TO

S
C

on
fig

ur
at

io
n

Em
be

dd
ed

Ap
pl

ic
at

io
n

so
ur

ce
 c

od
e

Interactive
Resolution

Phase 1: Generating Dynamic Analysis Friendly LeApp Phase 2: Testing

Interactive Automated

LeApp Generation

Runtime
Library

Sec. 4.1.4 Sec. 4.1.5

Sec. 4.2

Figure 3: Overview of our LEMIX framework.

task and vTaskStartScheduler to start the scheduler. Similarly,
xTimerCreate function is used to register for a timer event.

Embedded systems use a portable layer enabling an RTOS
to be used for different MCUs (Figure 1). As explained in
§ 2.2, most RTOSes maintain an NPL enabling them to run
on top of regular OSes, i.e., Windows (WPL) or Linux (LPL).

Given the source code of an embedded application, we
identify the RTOS dependencies and re-configure them with
corresponding LPL. To aid our process, we gather and main-
tain the LPL software packages of RTOSes apriori. This is not
trivial as the build setup of the application may include MCU-
specific configurations enabling certain HAL-specific APIs
necessary for its functionality. For instance, in the FreeRTOS
app TinyUSB, the configTIMER_QUEUE_LENGTH is set to 32, while
the POSIX build sets it to 20, causing undefined behavior
due to the application’s expectation that this value should
not exceed its configuration. In few cases, peripheral models
implemented in the original RTOS may not be available in
the corresponding LPL.

To address this, we designed a fully automated approach
that selectively integrates configurations from the application
that do not disrupt the LPL build. Each RTOS configuration
from the application is iteratively toggled in the LPL build,
retaining those that compile successfully. Once the LPL build
successfully incorporates the necessary configurations, we
replace the application’s RTOS object files with those from
the successful LPL build. We term this process as POSIX
Swap. This approach however can induce unexpected behav-
iors in the ported application since not every configuration
was incorporated from the application’s config. But, we did
not observe any false positive crashes due to misconfigured
LPL build during our evaluation.

4.1.2 Interactive Resolution for Retargeting (Ch 2)

As mentioned in § 3.3, our goal is to build LEAPP for common
desktop ISAs, specifically x86, because of the availability of
various testing tools. We want to use the CLANG compiler as
the LLVM IR enables us to easily perform various analysis

tasks, and also, several techniques (e.g., loop analysis) already
exist in the CLANG infrastructure. However, just replacing
the compiler with CLANG and changing the target ISA to x86
does not work. Because (as mentioned in § 3.3) embedded
applications use non-standard C language features and inline
assembly of other ISAs, e.g., ARM. Handling this requires
program semantic reasoning [46], a known hard problem.

We use an interactive human-in-the-loop refactoring ap-
proach to tackle this. We aim to automatically refactor the
code to be CLANG and x86 friendly using a set of refactor
patterns. However, for cases requiring semantic reasoning, we
resort to developer assistance by providing precise guidance
instructions. Our automation takes over after developer as-
sistance, and the process continues with intermittent manual
refactorings until the resulting code can be compiled using
CLANG, i.e., able to generate LLVM Bitcode. Table 12 (Ex-
tended Report [90]) summarizes automated and interactive
refactorings. Further details of the build process tracing and
streamlining the build system for x86-clang can be found in
Appendix B.2 of the Extended Report [90].

We classify the set of refactorings into the following two
categories and present the techniques used to handle them:

1. Compiler Incompatibilities: These are incompatibilities
because of compilers (GCC v/s CLANG) and architecture-
dependent code, e.g., expecting int to be of 4 bytes. A
significant portion of embedded software relies on GCC-
based toolchains [95]. Hence, making the transition from
a GCC build environment to CLANG is challenging, espe-
cially for embedded codebases [81]. Table 12 (Extended
Report [90]) highlights the incompatibilities between GCC
and CLANG affecting our embedded applications. Some
of these, such as Variable-Sized Object initialization, are
still not supported even in the latest version of LLVM at
the time of writing (LLVM 18) [20]. Although several
works [16, 81, 50] mention this problem, to the best of
our knowledge, we are the first to highlight these issues,
which have not yet received sufficient attention among em-
bedded developers. Addressing compiler incompatibilities

requires semantically equivalent refactorings. We define a
set of refactoring templates for automatically handling sev-
eral of these issues and resort to developer assistance for
others. We also provide guidance instructions to assist in
the refactoring an example of which is shown in Listing 4
(Extended Report [90]).

2. Inline Assembly: Embedded applications often use inline
assembly for low-level operations, such as MCU-specific
initialization [81]. LEAPP eliminates the need for such
initialization by relying on LPL. As discussed in § 3.2.2,
precise handling of assembly is unnecessary for manifest-
ing most vulnerabilities. We automate source code rewrit-
ing to identify and comment out inline assembly regions.
Commenting out assembly may lead to uninitialized or
undefined variables (e.g., Listing 4 Appendix). Most inline
assembly reads architecture-specific registers for initializa-
tion checks. To address this, we randomly initialize vari-
ables defined by assembly to 0 or 1, allowing applications
to bypass initialization routines over multiple runs. Our
approach may not handle all cases, such as inline assem-
bly within macros or machine code representations (e.g.,
Listing 5 in Appendix). In such cases, we automatically
detect issues and provide developers with precise instruc-
tions, such as resolving compilation errors like expected
closing parenthesis. LEMIX pinpoints problematic lines
and suggests fixes, ensuring minimal manual intervention.

4.1.3 Opportunistic Symbol Resolution

The final step in creating the LEAPP involves linking com-
piled LPL and application object files. However, directly
linking RTOS object files often results in linker errors [8]
because embedded applications may invoke MCU-specific
functions [81] that are not present in LPL, causing undefined
reference errors [70]. For example, in the FreeRTOS appli-
cation Infinitime, the function xTimerGenericCommand is
invoked but not available in LPL, leading to a linker error.

LEMIX incrementally resolves linker errors by selectively
linking only the required object files from the prebuilt LPL,
resolving linker conflicts in an automated fashion. This is
achieved using an opportunistic approach by identifying and
linking MCU-specific RTOS object files (denoted as Ou) that
define the missing symbols. However, this can cause multiple
definition errors if symbols in Ou overlap with those in LPL.
For instance, resolving xTimerGenericCommand by including
the application kernel’s timers.o introduces duplicate defini-
tions, such as prvInitialiseNewTimer, between the application
kernel’s timers.o and the LPL kernel’s timers.o. We want to
ensure that references are linked with the expected symbols.
We use a two-phase approach to tackle this:

1. Creating Library Archives: We observed that embed-
ded applications and RTOSes use build procedures based
on archiving [3], which prevents duplicate symbol errors

across multiple components, e.g., an application can have
a function (say f) with the same function as an RTOS func-
tion. Creating an archive of application-specific object files
ensures that all references to f within these object files
are linked to the application-specific version. We trace the
build process to identify which archives (and their order)
were created and the corresponding object files. We follow
the same order when creating and linking archive files to
ensure that original references are intact.

2. Modifying Symbol in One of the Objects: The remaining
multiple references cannot be resolved by archiving; hence,
the symbol name has to be modified in one of the object
files. If the multiple reference is between an Application’s
object file and LPL object file, we change the symbol name
in the Application object file, which ensures that calls in
the application to LPL functions are linked appropriately.

Handling Symbol Aliasing: In the original application’s
build procedure, the linker might create aliases for various
symbols to maintain interoperability across different boards as
guided by linker scripts. For instance, the symbol __init_clock
might be resolved to aliases like __stm32_clock_init or
__nrf52_clock_init, depending on the target board. Addition-
ally, multiple aliases can be created for the same symbol.
Ignoring such aliases results in NULL-ptr deferences while exe-
cuting the resulting LEAPP. To tackle this, we first extract
the aliasing information using firmware debug symbols from
the original embedded application (compiled for the target
MCU) and identify symbol aliases with the help of GDB.
Next, we instrument our LEAPP and link the symbol aliases
to the appropriate references in LEAPP.

4.1.4 Peripheral Modeling and Instrumentation (Ch 3)

As mentioned in § 2.3, our threat model includes malicious
peripherals, i.e., we assume that all inputs from peripherals
can be controlled by an attacker. As mentioned in § 2.1, appli-
cations interact with peripherals by accessing corresponding
MMIO addresses and interrupts.

Handling MMIO Accesses: Input from peripherals is re-
ceived through reading MMIO addresses. We aim to model
loads (i.e., reads) from these addresses as reads from standard
input and ignore stores (i.e., writes) as we focus on vulnera-
bility detection (i.e., BMF as described in § 3.2.2).

First, we determine MMIO address ranges. One of the com-
mon techniques is to find these address ranges from peripheral
System View Description (SVD) files [89]. However, as we
will show in § 5.3, oftentimes, SVD files are incomplete and
do not contain all peripheral address ranges which is also a
known problem [4]. We aim to create an automated technique
that does not depend on SVD files. Peripherals have prede-
fined MMIO address ranges, and applications access them
through hardcoded addresses [84, 23]. We perform a constant

1 uint32_t HAL_RCC_GetSysClockFreq(void) {
2 uint32_t pllm = 0U, pllvco = 0U, pllp = 0U;
3 uint32_t sysclockfreq = 0U;
4 if (isMMIO(RCC->PLLCFGR)) {
5 pllm = get_input_from_stdin() & RCC_PLLCFGR_PLLM;
6 } else {
7 pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM; F

8 }
9 ...

10 sysclockfreq = pllvco / pllp; q ...}

Listing 2: F shows original MMIO accesses that are instru-
mented in LEAPP. q shows a div-by-zero bug in STM32.

address analysis to determine all hardcoded address values,
i.e., constant values used as pointer operands in load and store
instructions. The corresponding pages form the base MMIO
pages (Pm). For instance, if we found a constant address x,
then we will add the corresponding page [b,b+4093] to Pm,
where b = (x& ∼ (0x3FF)) is the base address of the corre-
sponding page. We also perform additional coalescing and
consider all pages within a range of ±2 KB from that bound-
ary, also as MMIO addresses. This approach helps group
related MMIO access and ensures that accesses within the
same memory-mapped region are consistently recognized.

Next, we will hook all loads and stores through compile-
time instrumentation and link with our runtime library. At
runtime, our hook will check if a load is within an MMIO
address range; if yes, then it will read an appropriate num-
ber of bytes from input and return the corresponding value.
Similarly, our hook will ignore all stores to MMIO address
ranges. Listing 2 shows the example of our instrumentation
(highlighted lines), where the memory access RCC->PLLCFGR is
checked to see if it is an MMIO address; if yes, we will read
a value of corresponding size (i.e., 4 bytes) from input.

Handling Interrupts: Interrupts are treated as peripheral
inputs and triggered at random intervals. LEMIX identifies
Interrupt Service Routines (ISRs) using RTOS-specific pat-
terns, such as ISR vector tables in assembly files, while ignor-
ing handlers implemented in assembly. Using RTOS-specific
templates, we create a Dispatcher Task to invoke ISRs at
arbitrary intervals (Listing 7 in Extended Report [90]). To
prevent false crashes from ISRs requiring preconditions (e.g.,
valid global pointers), we use lightweight binary analysis and
dynamic tracing to identify and disable them.

4.1.5 Dynamic Analysis Assistance Instrumentation

Embedded applications have considerable peripheral state-
dependent code [74]. Specifically, they check for peripherals
to be in a specific state before interacting with it or to perform
some interesting function, e.g., as shown in Listing 3, at lines
3-4, the code busy-waits until the control register (accessed
through MMIO read NRF_CLOCK->LFCLKSTAT) has any of the bits
corresponding to CLOCK_LFCLKSTAT_STATE_Pos that are not set.

Peripherals state is accessed through reading certain

1 // Before Condition Weakening
2 while
3 ((NRF_CLOCK->LFCLKSTAT & CLOCK_LFCLKSTAT_STATE_Pos);) {
4 // Busy Waiting
5 $ };
6 interesting_function();
7 // After Condition Weakening
8 label:
9 bool cond = (NRF_CLOCK->LFCLKSTAT &

10 CLOCK_LFCLKSTAT_STATE_Pos); ;

11 new_cond = cond;
12 if (isMMIO(NRF_CLOCK->LFCLKSTAT) && stdin_read() % 2) å

13 new_cond = !cond; u

14 while (new_cond) {goto label};
15 interesting_function();

Listing 3: ; indicates MMIO coverage blockers, $ marks
busy waiting due to unsolved constraints, å represents our
instrumentation and u shows MMIO condition toggling.

registers [43, 74], e.g., clock state is accessed through
NRF_CLOCK->LFCLKSTAT (an MMIO address) in Listing 3. Since
we model all peripheral reads (§ 4.1.4) as reads from standard
input, the coverage of state-dependent code becomes the prob-
lem of constraint input generation. For instance, in Listing 3,
the MMIO access, i.e.,, NRF_CLOCK->LFCLKSTAT will be fetched
from input. For the execution to reach out of the loop, an input
generation technique (e.g., AFL++) should provide an input
that satisfies the constraint. Existing techniques handle this
by providing precise peripheral models [74, 84] or symbolic
execution [19], but they have scalability issues [22].

To tackle this, we perform Weakening of Peripheral State
Dependent conditions. Specifically, we instrument each con-
ditional instruction to check whether it involves reading from
an MMIO address; if yes, we weaken the condition such that
any value can satisfy the constraint with 50% probability as
shown in the lower part of Listing 3. Previous works [63, 14]
show that such an approach improves the effectiveness of
fuzzing. We will also show in § 5.5 that our approach greatly
improves the coverage. We also perform instrumentation to
collect additional metrics, such as coverage.

4.2 Phase 2: Testing
This phase fuzzes the LEAPPs from Phase 1. We explore two
modes: Whole program and Function level.

4.2.1 Whole Program Fuzzing

Here, we fuzz LEAPPs as a whole by providing inputs at
appropriate locations (i.e., MMIO accesses) until LEAPP ter-
minates or crashes because of a bug.

4.2.2 Function Level Fuzzing

In this mode, we directly fuzz individual functions by pro-
viding arguments of appropriate type [104, 6]. Given a func-
tion f , we use a simple co-relation analysis [65] to deter-
mine the argument types and their size associations, e.g.,

Table 2: Approximate Number of unique basic blocks dis-
covered by various configurations of LEMIX in comparison
to State Of The Art Tools (Discussed in § 5.4 and § 5.6).
M1- M3 represents different configuration modes for LEMIX.
Refer to Table 13 (Extended Report [90]) for a larger version.

Lx Fw MfAppID
M1 M2 M3

Cov Bug Cov Bug Cov Bug Cov Crash Bug Cov Crash Bug

f1 731 0 2.9k 1 Ð 1 500 1 0 1k 0 0
f2 456 1 2.8k 3 Ð 1 - N/A N/A 1.5k 1 1
f3 560 1 668 2 1.5k 3 - N/A N/A - N/A N/A
f4 563 0 1k 1 6k 3 500 0 0 2k 41 0
f5 442 0 728 2 1.8k 2 700 0 0 1.8k 93 0

n1 105 0 301 1 13.5k 1 356 0 0 25.2k 148 0
n2 143 0 338 0 16.8k 1 405 0 0 300 0 0
n3 157 1 357 1 19.9k 1 60 1 1 100 1 0
n4 135 0 235 1 19.5k 1 388 3 0 2.4k 0 0
n5 823 0 1.5k 1 Ð 0 134 0 0 226 0 0

z1 76 0 86 2 3k 4 44 2 0 213 0 0
z2 > 0 > 2 12.3k 3 - N/A N/A 10.8k 483 1
z3 > 0 > 2 4.6k 6 - N/A N/A - N/A N/A

t1 210 0 553 0 6.3k 0 670 0 0 750 0 0
t2 214 0 553 0 240 0 791 0 0 694 0 0
t3 > 0 > 0 3.1k 0 900 0 0 700 0 0
t4 310 0 455 1 188 1 749 0 0 659 10 1
t5 254 0 436 0 5.2k 0 748 0 0 658 0 0

Avg/Tot 345 3 860 20 7.5k 28 496 7 1 3.1k 777 3

Unique Bugs 3 10 11 1 3

for a function that accepts two arguments, an integer array
pointer, and its length; our co-relation analysis will produce:
{arg1: {ARRAY, int, SIZE: arg2}, arg2: int}. Next, we auto-
matically create generators for each of the argument types,
i.e., functions that generate values of a specific type from the
input. For instance, for the above example, the generator will
create an integer array of an arbitrary size, populate it with
random integer values, and return the pointer and size. Finally,
we invoke f with the pointer returned by the generator and the
size as the second argument. Unlike whole program fuzzing
(§ 4.2.1), each fuzzing run in function level fuzzing invokes
the target function once and exits.

5 Evaluation

We use a combination of Python scripts and CLANG/LLVM
10 toolchain passes to implement our framework. We provide
more details in Appendix B.2 of Extended Report [90]. We
evaluate LEMIX by answering the following questions:

RQ1 (Converting to LEAPP (§ 5.2)): How effective is our
approach (§ 4.1.2) in converting embedded applications
to LEAPPs? How much manual effort does it require?

RQ2 (Peripheral Handling (§ 5.3)): How effective is our ap-
proach (§ 4.1.4) in identifying MMIO addresses?

RQ3 (Testing LEAPP Applications (§ 5.4)): What is the ef-
fectiveness of testing LEAPPs through different fuzzing
approaches, i.e., whole-program fuzzing and function-
level fuzzing?

RQ4 (Ablation Study (§ 5.5)): What is the contribution of

Table 3: Breakdown of Source Lines of Code by source files,
assembly (inline + standalone) , RTOS, and SDK (counted
once per application). See Table 7 in Extended Report [90]
for descriptions of each application.

RTOS ID SRC ASM RTOS SDK

FreeRTOS

f1 88k 2.2k 105k 100k

f2 22k 2.6k 13.5k 2.16M

f3 32.4k 1k 10.3k 130k

f4 657k 1.5k 209k
65k

f5 656k 2k 209k

Nuttx

n1 429k 26k 1.7M

8k
n2 428k 22k 1.6M

n3 429k 23k 1.65M

n4 429k 25k 1.7M

n5 310k 600 1.5M 198k

Zephyr

z1 200 1k 19k 0

z2 5.6k 0 20k 3k

z3 14.2k 0 20k 2.4k

Threadx

t1 413k 52.1k 351k

335k

t2 236k 52.2k 351k

t3 333k 51.3k 351k

t4 185k 51.4k 351k

t5 310k 52k 351k

our peripheral handling (§ 4.1.4) and dynamic analysis
assistance (§ 4.1.5) on overall effectiveness?

RQ5 (Comparative Evaluation (§ 5.6)): What is the effective-
ness of LEMIX compared to the existing state-of-the-art?

RQ6 (False Positive Analysis (§ 5.7)): What false positives
are introduced by low-fidelity execution, how do they
compare against existing State-Of-The-Art, and how are
they remediated?

5.1 Dataset and Setup
Dataset: Table 3 gives details of our application set with per-
component SLOC, selected in 2 steps.

First, to study Type-2 embedded systems, we ensured di-
versity at the RTOS level, choosing four popular RTOSes:
FreeRTOS (common in resource-constrained systems),
Zephyr (modular and scalable), Nuttx (POSIX-compliant),
and ThreadX (high-performance real-time applications).

Second, we sampled applications for each RTOS from
GitHub, including major, actively maintained projects (e.g.,
PX4 for drones, Infinitime for smartwatches) and smaller,
peripheral-focused ones (e.g., Nrf_Pwm for PWM tasks).
Setup: We have conducted our experiments on an AMD
EPYC 7543P 32 Core Processor with 64 threads and 128
GB of RAM. In whole program mode, we fuzzed each appli-
cation for 48 hours following suggested best practices [38].
In function-level mode, we fuzzed each target function for 10
minutes, after which coverage plateaued for most functions.

5.2 RQ1: Converting to Linux Applications
5.2.1 Methodology

We measure the ability of LEMIX to successfully convert the
18 embedded applications in our dataset to Linux applications
and the amount of manual effort required. An application is
successfully converted if it can be compiled and executed on
a Linux operating system without crashing. Additionally, as
described in § 4.1.2, LEMIX relies on human intervention to
guide retargeting to desktop ISA. We categorize the required
human effort into three categories as follows: (a) Setup (Iden-
tifying source files and build/compilation instructions), (b)
Addressing errors due to compiler incompatibilities, and (c)
Handling inline assembly. We measure the time spent in each
category and the impact on the application’s source files.

These conversions were performed by the authors, who are
graduate students with intermediate expertise in C/C++ but
with less experience with embedded codebases. The conver-
sion time to LEAPP depends on familiarity with the embedded
codebase, so the reported measurements represent an upper
bound; engineers with embedded expertise should require
significantly less time.

FreeRTOS Nuttx Zephyr Threadx
0

20

40

60

80

RTOSes

Ti
m

e
(i

n
m

in
s)

Figure 4: Comparison of manual effort time (y-axis) across
RTOSes (x-axis), categorized into: (a) - Preconfigurations
and source modifications; (b) – Non-automated compiler
errors; and (c) – Macro ASM adjustments.

5.2.2 Results

Using LEMIX’s interactive approach, we successfully con-
verted all the applications in our dataset to LEAPPs. As shown
by the results in Table 2, we were able to execute and dynam-
ically analyze all 18 applications.

Figure 4 shows the box plot of time spent in each human
effort category for applications across different RTOSes. In
all RTOSes, setup time (category (a), median 40–60 min) is
the largest contributor, mainly for identifying the build setup,
dependencies, and toolchains. These times align with Shen
et al. [80], who reported an average of 60 min for embedded
build setup. Note that setup time is independent of LEMIX.
As shown in Figure 4, our interactive steps (categories (b) and
(c)) contribute minimally to the manual effort.

Table 4 highlights SLoC affected for categories (b) and (c).
Manual effort for (b) is relatively low (median 20–40 min)
compared to the SLoC modified, demonstrating effective han-
dling of compiler incompatibilities. For example, NuttX appli-
cations required no manual effort for (b) as they used standard
C features supported by CLANG, larger FreeRTOS applica-
tions required more effort due to greater SLoC changes.

Despite of a large number of ASM modifications, the
amount of manual effort (i.e., category (c) with a median
of 20–30 minutes in Figure 4) is relatively lower, demonstrat-
ing the effectiveness of our source code transformations to
automatically handle inline assembly.

RQ1 results demonstrate that LEMIX can successfully con-
vert embedded applications to LEAPPs and requires mini-
mal manual effort.

5.3 RQ2: Peripheral Handling

5.3.1 Methodology

We assess the effectiveness of our constant address analysis
in two ways. First, we validate discovered address ranges by
checking for overlaps with the LEAPP’s actual memory map,
ensuring MMIO ranges remain distinct. This validation lever-
ages standard memory boundaries documented in SVD files,
which define peripheral registers and their address mappings.

Second, we corroborate the results of LEMIX’s constant
address analysis by comparing the discovered address ranges
against those specified in CMSIS-SVD files [55]. Discrepan-
cies are manually investigated through random sampling to
understand gaps in identification. Both methods are necessary
to ensure accuracy and to identify limitations of SVD-based
documentation versus our constant address analysis approach.

5.3.2 Results

Table 5 shows the number of MMIO address ranges found
across different applications. Upon investigation, we found
that none of these address ranges conflict with the memory
map of the corresponding LEAPP. Hence, instrumenting reads
from these addresses should not affect LEAPP’s execution.

When we compared the discovered address ranges with
those in CMSIS-SVD files [55], we found that over 50% of
our address ranges are missing in CMSIS-SVD files (last
column of Table 5). Further analysis revealed that the miss-
ing address ranges represented valid MMIO addresses in the
source code and corresponded with those used by valid core
peripherals [4]. Listing 14 (Extended Report [90]) shows
MMIO address ranges used in the codebase but missing from
the corresponding peripheral’s SVD file.

Table 4: Detailed porting metrics for each application, including type of files modified, lines added or removed, and impact
percentages (lines affected over total lines). The times are summarized in Figure 4.

AppID Total Files Total Lines Files Modified Lines Added/Removed Impact %

App RTOS App RTOS Sources Headers ASM Sources + Headers ASM

Category (b) Category (c)

f1 1.1k 612 184k 105k 2 8 6 2, -2 +505, -964 0.51
f2 5.8k 100 2.38M 13.5k 2 3 11 +218, -6 +410, -1483 0.09
f3 201 31 162.5k 10.3k 10 5 4 +502, -128 +539, -953 1.23
f4 232 584 724k 209k 3 2 4 +239, -2 +539, -1007 0.19
f5 230 584 723k 209k 2 1 4 +238, -2 +539, -1007 0.19

n1 400 14k 429k 1.7M 0 0 4 NIL +133, -500 0.03
n2 378 13.9k 428k 1.6M 0 0 4 NIL +133, -500 0.03
n3 355 13.8k 429k 1.65M 0 0 7 NIL +147, -537 0.03
n4 400 14k 429k 1.7M 0 0 8 NIL +148, -575 0.03
n5 455 12.9k 435k 1.5M 3 2 1 +6, -6 +152, -400 0.03

z1 50 6.2k 200 20k 7 3 0 +235, -171 NIL 1.27
z2 203 6.2k 8.6k 20k 7 3 0 +220, -180 NIL 1.40
z3 221 6.2k 16.6k 20k 7 3 0 +220, -180 NIL 1.09

t1 4.8k 1.3k 748k 351k 1 0 2 +3, 0 +568, -884 0.14
t2 3.8k 1.3k 571k 351k 0 0 2 NIL +569, -879 0.16
t3 3.5k 1.3k 668k 351k 1 0 2 +4, 0 +568, -884 0.14
t4 3.3k 1.2k 520k 351k 0 0 1 NIL +23, -167 0.02
t5 4.3k 1.2k 645k 351k 1 0 2 +3, 0 +568, -884 0.14

RQ2 results show that our constant address analysis is
effective at finding MMIO address ranges and provides
more complete results than the commonly used approach
of analyzing SVD files.

5.4 RQ3: Testing LEAPPs

5.4.1 Methodology

In this RQ, we assess the effectiveness of the converted
LEAPPs in supporting different fuzzing modes: Whole Pro-
gram Fuzzing with MMIO instrumentation (M1), Whole Pro-
gram Fuzzing with MMIO + Weakening State-Dependent
Conditions (M2), and Function-Level fuzzing (M3) incorpo-
rating all optimizations from (M1) and (M2). We measure
and report the code coverage (in terms of unique basic blocks
covered) and the number of unique bugs detected through
each mode, following crash triaging and manual confirmation
according to our threat model. For whole-program fuzzing,
we identified the MCU firmware ELF entrypoint and ensured
the LEAPP’s entrypoint matched it (ignoring assembly-based
entrypoints). This was necessary to initialize global structures
for peripheral handling and avoid NULL-ptr dereferences in the
LEAPP. To identify candidate functions for function-level
fuzzing, we first filtered functions that take pointer arguments
without a specified size. Next, we manually verified (5 min-
utes per function) whether these functions performed any
interesting operations, such as pointer arithmetic or explicit
casts, which are common in risky programming idioms. Pre-
vious work [21] indicates that these characteristics are strong

indicators of potentially buggy functions. Depending on the
target, this process typically leaves us with roughly 100-150
functions per application for further fuzzing.

5.4.2 Results

Table 2 shows the code coverage and bug detection results
when conducting whole program (M2) and function-level
(M3) fuzzing. Using LEMIX, we conducted whole program
and function-level fuzzing on 15 applications each. We manu-
ally created the memory layout for z1 as a demonstration but
did not perform whole-program fuzzing for z2, z3, and t3 due
to their layout-dependent code, which is not automated (§ 6).
We did not perform function-level fuzzing on f1, f2, and n5
as they were written in C++, and our current implementation
of function-level fuzzing does not support C++ objects.

Code Coverage: In whole program fuzzing, we triggered
a considerable number of reachable functions (i.e., those
that can be reached through main) in each LEAPP. Figure 5
shows the percentage of triggered functions, with over
70% triggered on average, except for f2, f3, and z1. The
Cumulative Distribution Function (CDF) in Figure 5 illus-
trates function coverage, where each point (x,y) indicates that
x% of triggered functions have y% or less code coverage. The
consistent slope across LEAPPs confirms that LEMIX enables
effective testing with reasonable coverage. For example, in
FreeRTOS LEAPPs, 40% of triggered functions achieve 40%
or more code coverage. Table 2 shows absolute coverage,
with function-level fuzzing providing ∼10x more coverage
than whole-program fuzzing, as it targets individual functions.

Table 5: MMIO detection analysis highlights potential un-
documented peripherals in SVD files. SVD Detection shows
documented MMIOs, while Potential MMIOs indicates de-
tected MMIOs that may represent undocumented peripherals.

AppID Detected MMIOs In SVD (% of Detected)

f1 45 11 (24.44)
f2 33 16 (48.48)
f3 35 18 (51.43)
f4 15 11 (73.33)
f5 15 11 (73.33)

n1 8 4 (50.0)
n2 10 5 (50.0)
n3 9 4 (44.44)
n4 9 4 (44.44)
n5 60 9 (15.0)

z1 10 4 (40.0)
z2 10 5 (50.0)
z3 54 25 (46.3)

t1 16 6 (37.5)
t2 16 6 (37.5)
t3 3 1 (33.33)
t4 16 6 (37.5)
t5 16 6 (37.5)

Bug Detection: Table 2 also shows the bugs detected by
each approach. Overall, as expected, function level fuzzing
(M3) identified 11 additional unique bugs. This is due to
its ability to directly exercise risky functions. As shown in
Listing 1, function-level fuzzing (M3) uncovered an out-of-
bounds access in a deep function that whole-program fuzzing
(M2) missed, as the function was never triggered.

As shown in the last row of Table 2, although total bugs
are large (e.g., 28), the number of unique bugs is small (e.g.,
11). This is because the same bugs (those in RTOS functions)
could be present multiple in LEAPPs. More details can be
found in Appendix F.1 of the Extended Report [90]. Table 7
(Appendix) summarizes the bug types, affected applications,
bug descriptions, and developer responses. Table 9 (Extended
Report [90]) shows a detailed split of bugs and unique bugs.
Table 10 (Extended Report [90]) provides the categorization
of unique bugs. We found several memory corruption bugs in
addition to robustness bugs, such as Divide-by-0 (Listing 2).

RQ3 results demonstrate that LEMIX facilitates whole-
program and function-level fuzzing, leading to high code
coverage and bug detection.

5.5 RQ4: Ablation Study
5.5.1 Methodology

This RQ measures the contributions of our peripheral han-
dling (§ 4.1.4) and condition weakening (§ 4.1.5) instrumen-
tation in facilitating dynamic analysis. We disabled each

of these instrumentations and report their impact on whole-
program fuzzing. While function-level fuzzing performed
better, whole-program fuzzing compensated for the limita-
tions of function-level fuzzing on C++ applications and pro-
vided insights into how effectively a LEAPP can be tested as
a standalone application.

5.5.2 Results

Peripheral handling instrumentations When the instrumen-
tations on MMIO accesses are disabled, we observed that all
LEAPPs crash immediately after they are started. As men-
tioned before, LEAPPs are fuzzed as regular Linux applica-
tions, in which MMIO addresses may not be mapped; conse-
quently, any MMIO accesses will result in invalid memory
access and segfault. This shows that our peripheral handling
instrumentation is necessary for testing LEAPPs.

Condition weakening instrumentation: When the in-
strumentations that weaken state-dependent conditions are
disabled, we observe a large drop in the number of covered
basic blocks. The M1 and M2 columns in Table 2 shows
the number of covered basic blocks and bugs found when
conducting whole-program fuzzing without and with this in-
strumentation. On average, we see an improvement of ∼2x
in the number of basic blocks covered with M2 over M1. All
bugs found by M1 were also detected by M2, with the ad-
dition of 7 more bugs. These results show that embedded
applications greatly depend on the peripheral state for their
execution, and ignoring them results in ineffective testing.

RQ4 results show that our instrumentation-based tech-
niques significantly improve the effectiveness of testing.

5.6 RQ5: Comparative Evaluation

5.6.1 Methodology

In this RQ, we compare the code coverage and bug detec-
tion results of LEMIX with results from other recent dynamic
analysis techniques that target embedded applications. We se-
lected baselines that follow the LEMIX’s philosophy of being
usable on applications without requiring low-level understand-
ing of the application’s internal implementation. This led to
three baselines: P2IM [23], Fuzzware (Fw) [74] and Multi-
Fuzz (M f) [13], and the exclusion of three others: PMCU [45],
Halucinator [15] and SAFIREFUZZ [75]. Notably, PMCU
required a custom RTOS configuration for each application
based on the application’s internal implementation. Haluci-
nator and SAFIREFUZZ require creating handlers for each
peripheral the application interacted with.

We were unable to set up P2IM, despite following their
instructions and attempting to contact the authors. Addition-
ally, we encountered challenges setting up fuzzing for cer-
tain applications (e.g., f3, z3) using Fuzzware and Multifuzz,

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Triggered Functions (%)

Fu
nc

tio
n

C
ov

er
ag

e
(%

)
FreeRTOS

f1 (83.33%)
f2 (30.62%)
f3 (22.02%)
f4 (62.50%)
f5 (76.25%)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Triggered Functions (%)

Fu
nc

tio
n

C
ov

er
ag

e
(%

)

Nuttx

n1 (84.42%)
n2 (95.24%)
n3 (92.68%)
n4 (92.68%)
n5 (93.34%)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Triggered Functions (%)

Fu
nc

tio
n

C
ov

er
ag

e
(%

)

Zephyr

z1 (15.62%)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Triggered Functions (%)

Fu
nc

tio
n

C
ov

er
ag

e
(%

)

Threadx

t1 (77.78%)
t2 (78.95%)
t4 (78.95%)
t5 (66.67%)

Figure 5: CDFs of function coverage for different applications. Each line shows the proportion of functions (x-axis) with up to a
given coverage percentage (y-axis) under app-level fuzzing.

primarily due to inaccurate memory modeling, resulting in
applications crashing with unsupported or invalid instructions.
Consequently, we evaluated Fuzzware and Multifuzz on the
remaining original, non-converted LEAPPs.

5.6.2 Results

Table 2 shows the results of fuzzing each LEAPP with the
selected baselines. We found that, on average, LEMIX con-
figurations (M2/M3) detected 21 bugs, while Multifuzz (Mf)
and Fuzzware (Fw) detected 1 and 3 bugs, respectively. From
a code coverage perspective, Mf outperformed Fw for most
applications. However, LEMIX configurations (M2/M3) out-
performed Mf for most applications except for n1 and z2.
This was primarily due to Mf ’s ability to trigger nested inter-
rupts, which led to higher coverage. In contrast, LEMIX uses
a simpler interrupt handling approach (§ 4.1.4) and does not
support nested interrupts. We also observed that Fw occasion-
ally reported false positives, such as crashes in z1, caused by
incorrect interrupt handling. From the bug detection perspec-
tive, LEMIX is even more effective by detecting 21 bugs, with
Fuzzware and MultiFuzz detecting only 1 and 3 respectively.
Furthermore, all bugs found by Fuzzware and MultiFuzz are
also found by LEMIX.

RQ5 results indicate that LEMIX has better bug-finding
ability than existing techniques.

5.7 RQ6: False Positive Analysis

5.7.1 Methodology

This RQ aims to analyze false positives that arise due to our
low-fidelity approximations, how they compare with existing
works, and provide remediation for each type of false positive.
Our analysis covers the LEMIX components that introduce
approximations, as these are the sources of false positives.

Table 6: False positives due to LEMIX approximations.

AppID Inline ASM Interrupt Misfiring Board Layout

f1 1 1 0
f2 1 3 0
z2 0 0 1
z3 0 0 1
t2 0 1 1

Total 2 5 3

5.7.2 Results

Table 6 summarizes the number and type of false positives
encountered across various applications.

POSIX Swap (§ 4.1.1): LEMIX replaces the board-specific
RTOS layer with a POSIX-compatible one. While this can in-
troduce false positives due to kernel misconfiguration, we ob-
served none in our case. For example, incorrect task priorities
could affect behavior, but we mitigated this by incorporating
all relevant application kernel configurations.

Inline ASM (§ 4.1.2): LEMIX removes all inline assembly
and approximates expected values at runtime using random
values of the same type This led to two false positives across
all applications. For instance, Listing 4 (Appendix) shows
how inline assembly was used for initialization, which we
identified through debugger-inspected halts. We resolved this
by patching the instruction to return the expected value.

Symbol Modifications (§ 4.1.3): Our symbol modification
strategy iteratively resolves linker errors and could, in princi-
ple, introduce false positives such as from incorrect renaming
of indirect function calls. However, we observed none.

Interrupt Misfiring (§ 4.1.4): LEMIX attempts to trigger all
interrupts from the isr_vector_table. This can cause crashes
if global structures with callback routines are uninitialized.
Listing 9 of Extended Report [90] gives an example of a mis-
fired interrupt. We remediate using lightweight static analysis
to trigger interrupts accurately.

Board Layout (§ 6): Board-specific layout-dependent code
is a limitation of our work, preventing analysis of two Zephyr

and one ThreadX applications. An example of this issue is
shown in Listing 6. We manually constructed the layout for
one Zephyr application for our evaluation.

The existing tools used in our Comparative Evaluation
(§ 5.6) also suffer from false positives due to misfired inter-
rupts and emulation issues. In contrast to LEMIX, these tools
had a greater number of false positive crashes, as indicated
by the large numbers along the crash column of Table 2. Fur-
thermore, triaging these crashes (especially in the case of
Fuzzware (Fw)) is non-trivial, and has also been acknowl-
edged by recent work [10]. LEMIX adopts an approximate
but principled approach, enabling us to easily identify false
positives and resolve them.

RQ6 results indicate that the lower-fidelity execution
model used by LEMIX does not lead to excessive false
positives, as evidenced by our comparative evaluation.

6 Limitations and Future Work

We recognize the following limitations of LEMIX and plan to
handle them as part of our future work.

• Dependency on LPL: Our approach depends on the exis-
tence of LPL for RTOSes. Most RTOSes already have LPL
for ease of development.

• Incomplete ISR coverage: Our approach identifies ISRs
via RTOS-specific pattern matching, which worked reliably
in our experiments. However, we skip ISRs that depend on
global state, leading to some coverage gaps. Recent works
like AIM [24] improve ISR identification and invocation,
and we plan to incorporate such techniques into LEMIX.

• Unable to handle layout-specific code: We found cases
where embedded applications rely on specific memory lay-
outs, hindering our efforts in further analysis. Listing 6
(Appendix) shows an example from a Zephyr RTOS appli-
cation. As future work, we plan to automatically detect and
refactor such code idioms.

7 Related Work

Both static [59, 62] and dynamic analysis techniques [29, 52,
30] are widely used for vulnerability detection. Rehosting
is a necessary capability for scalable dynamic analysis of
embedded software. This process is relatively easy for Type-1
systems [11, 47], i.e., those based on standard OSes such as
Embedded Linux. Consequently, several techniques [22] exist
for rehosting Type-1 systems. But, these cannot be applied
to Type-2 systems because of the lack of well-defined OS
interface and tight coupling with hardware [22].

One of the most important challenges of Rehosting Type-2
systems is the capability to handle peripheral interactions. Ex-
isting techniques to handle this can be categorized at a high

level into hardware-in-the-loop [35] or software model [84]
based approaches. The hardware-in-the-loop approaches [56,
44, 71, 31, 17, 34, 35, 39] achieve the highest level of fidelity
and less manual effort. Given the diversity of hardware plat-
forms, these techniques are hard to scale.

The software-only approaches [23, 106, 74, 36, 86] pro-
vide low-fidelity execution unless there are precise peripheral
models. Automated peripheral modeling techniques [15, 23,
84, 32] are specific to certain peripherals and hard to gener-
alize. Some techniques [74, 17] use symbolic execution [37]
to create peripheral models. As shown by the recent system-
atization work [22], these techniques are hard to extend for
different peripherals and depend on the existence of emula-
tors [66, 51] of the corresponding ISA. On the other hand,
works such as METAEMU [12] attempt to rehost firmware in
an architecture-agnostic way by lifting firmware code to an In-
termediate Representation as directed by Ghidra’s Language
Specifications [69] enabling multi-target analysis. However,
these techniques struggle with manual efforts required for
specification creation, peripheral modeling, and limited sup-
port for specialized automotive protocols.

One of the most closely related works is by Li et al. [45],
who rehost MCU libraries for testing on Linux by implement-
ing a portable MCU (PMCU) using the POSIX interface and
abstracting hardware functions. However, their method relies
on hand-written abstractions for specific libraries and does
not handle unknown or undocumented peripherals, nor does it
scale well across diverse firmware binaries. LEMIX side-steps
the problem of precise peripheral emulation by using NPL,
which relaxes the requirement of precise peripheral models
without affecting the execution of the target embedded system.
Unlike prior works that require accurate peripheral models
or emulation for specific hardware targets, our approach gen-
eralizes across firmware by focusing on what is sufficient to
trigger bugs, rather than replicating exact hardware behavior.
As a result, dynamic analysis can be applied to embedded
code in a more generalizable manner.

8 Conclusion

We propose LEMIX, a novel approach to rehosting embedded
applications as Linux applications by providing solutions to
the associated challenges of retargeting to X86, preserving
the execution semantics, and handling the peripheral inter-
actions. We evaluated LEMIX on 18 embedded applications
across four RTOSes and found 21 previously unknown bugs,
most of which are confirmed and fixed by the corresponding
developers. Our comparative evaluation shows that LEMIX
outperforms existing state-of-the-art techniques in testing
embedded applications. As future work, we aim to broaden
LEMIX’s applicability by improving automation, coverage,
and support for diverse embedded platforms.

9 Ethics Considerations

This section outlines the ethical considerations in designing,
implementing, and evaluating LEMIX. The primary stakehold-
ers are:

• Maintainers of the evaluated RTOSes and embedded
applications.

• Users of those systems.

Risks and Benefits from Discovered Bugs: Our evalua-
tion of LEMIX resulted in 21 new bugs. These defects, though
not deemed security-critical, could lead to malfunctions or
crashes. Hence, we reported all issues via public bug trackers
and submitted corresponding patches. Most were acknowl-
edged and merged by maintainers. Users who do not update
may face residual risks if bugs are later exploited.

Risks and Benefits from LEMIX’s Release: LEMIX will
be open-sourced (see §10), making it available to both defend-
ers and potential attackers. Like other defect discovery tools
(e.g., fuzzers), it can be used ethically or maliciously.

These risks are common in vulnerability research. Our
work aligns with accepted ethical standards in cybersecurity.
To minimize risk, we submitted patches with each report;
vendors did not treat the bugs as significant security threats,
and no CVEs were issued.

10 Open Science

Our implementation of LEMIX, along with the dataset and
necessary documentation, can be found at https://zenodo.
org/records/15611391. See https://seemoss.org/ for
more information.

11 Acknowledgments

We thank the reviewers and shepherd for their feedback to
improve our paper. We thank Jayashree Srinivasan for propos-
ing the name and first prototype. This work was supported
by Rolls-Royce and by the US National Science Foundation
(NSF) under Grants CNS-2340548 and CNS-2333487. This
manuscript reflects the views of the authors and not those of
Rolls-Royce and NSF.

References

[1] Omar Alrawi et al. “SoK: Security Evaluation of Home-
Based IoT Deployments”. In: 2019 IEEE Symposium on
Security and Privacy (2019).

[2] Manos Antonakakis et al. “Understanding the mirai botnet”.
In: 26th USENIX security symposium (USENIX Security 17).
2017.

[3] ar(1) - Linux man page. URL: https://linux.die.net/
man/1/ar (visited on 01/16/2025).

[4] ARM-software. SVD files: Missing the Core Peripherals ·
Issue #844 · ARM-software/CMSIS_5. https://github.
com/ARM-software/CMSIS_5/issues/844. Accessed:
2025-01-20.

[5] Miguel A Arroyo. “Bespoke Security for Resource Con-
strained Cyber-Physical Systems”. en. In: ProQuest Dis-
sertations and Theses. Accessed 15 Feb. 2023. Columbia
University, 2021, p. 171. URL: https://www.proquest.
com / dissertations - theses / bespoke - security -
resource-constrained-cyber/docview/2470276679/
se-2?accountid=13360..

[6] Domagoj Babić et al. “FUDGE: Fuzz Driver Generation at
Scale”. In: Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering. 2019.

[7] Roberto Bagnara, Abramo Bagnara, and Patricia M Hill.
“The MISRA C coding standard and its role in the devel-
opment and analysis of safety-and security-critical embed-
ded software”. In: International Static Analysis Symposium.
2018.

[8] Katharina Bogad and Manuel Huber. “Harzer Roller: Linker-
Based Instrumentation for Enhanced Embedded Security
Testing”. In: Proceedings of the 3rd Reversing and Offensive-
Oriented Trends Symposium. 2020.

[9] Marcel Böhme, Cristian Cadar, and Abhik Roychoudhury.
“Fuzzing: Challenges and Reflections.” In: IEEE Software
38.3 (2021), pp. 79–86.

[10] Boyu Chang et al. “ FirmRCA: Towards Post-Fuzzing Anal-
ysis on ARM Embedded Firmware with Efficient Event-
based Fault Localization ”. In: 2025 IEEE Symposium on
Security and Privacy (SP). 2025.

[11] Daming D. Chen et al. “Towards Automated Dynamic Anal-
ysis for Linux-based Embedded Firmware”. In: 23rd Annual
Network and Distributed System Security Symposium, NDSS
2016, San Diego, California, USA, February 21-24, 2016.
The Internet Society, 2016.

[12] Zitai Chen, Sam L Thomas, and Flavio D Garcia. “Metaemu:
An architecture agnostic rehosting framework for automo-
tive firmware”. In: Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security.
2022.

[13] Michael Chesser, Surya Nepal, and Damith C. Ranasinghe.
“MultiFuzz: A Multi-Stream Fuzzer For Testing Monolithic
Firmware”. In: 33rd USENIX Security Symposium (USENIX
Security 24). 2024.

[14] Jaeseung Choi et al. “Grey-box concolic testing on binary
code”. In: 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). 2019.

[15] Abraham A. Clements et al. “HALucinator: firmware re-
hosting through abstraction layer emulation”. In: 29th
USENIX Security Symposium (USENIX Security 20). 2020.

https://zenodo.org/records/15611391
https://zenodo.org/records/15611391
https://seemoss.org/
https://linux.die.net/man/1/ar
https://linux.die.net/man/1/ar
https://github.com/ARM-software/CMSIS_5/issues/844
https://github.com/ARM-software/CMSIS_5/issues/844
https://www.proquest.com/dissertations-theses/bespoke-security-resource-constrained-cyber/docview/2470276679/se-2?accountid=13360.
https://www.proquest.com/dissertations-theses/bespoke-security-resource-constrained-cyber/docview/2470276679/se-2?accountid=13360.
https://www.proquest.com/dissertations-theses/bespoke-security-resource-constrained-cyber/docview/2470276679/se-2?accountid=13360.
https://www.proquest.com/dissertations-theses/bespoke-security-resource-constrained-cyber/docview/2470276679/se-2?accountid=13360.

[16] Jake Corina et al. “Difuze: Interface aware fuzzing for kernel
drivers”. In: Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security. 2017.

[17] Nassim Corteggiani, Giovanni Camurati, and Aurélien Fran-
cillon. “Inception: System-Wide Security Testing of Real-
World Embedded Systems Software”. In: 27th USENIX Se-
curity Symposium (USENIX Security 18). 2018.

[18] Daniele Cono D’Elia et al. “SoK: Using dynamic binary
instrumentation for security (and how you may get caught
red handed)”. In: Proceedings of the 2019 ACM Asia Con-
ference on Computer and Communications Security. 2019.

[19] Drew Davidson et al. “FIE on firmware: Finding vulnerabil-
ities in embedded systems using symbolic execution”. In:
22nd USENIX Security Symposium (USENIX Security 13).
2013.

[20] dgookin. Not Every Compiler Likes Your Code | C For Dum-
mies Blog. Jan. 2023. URL: https://c-for-dummies.
com/blog/?p=5711.

[21] Xiaoning Du et al. “Leopard: Identifying vulnerable code
for vulnerability assessment through program metrics”. In:
2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). 2019.

[22] Andrew Fasano et al. “Sok: Enabling security analyses of
embedded systems via rehosting”. In: Proceedings of the
2021 ACM Asia conference on computer and communica-
tions security (AsiaCCS). 2021.

[23] Bo Feng, Alejandro Mera, and Long Lu. “P2IM: Scalable
and Hardware-independent Firmware Testing via Automatic
Peripheral Interface Modeling”. In: 29th USENIX Security
Symposium (USENIX Security 20). 2020.

[24] Bo Feng et al. “AIM: Automatic Interrupt Modeling for
Dynamic Firmware Analysis”. In: IEEE Transactions on
Dependable and Secure Computing (2024).

[25] FreeRTOS. http://freertos.org.

[26] Jian Gao et al. “EM-Fuzz: Augmented Firmware Fuzzing
via Memory Checking”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems
(2020).

[27] Mohammed Ali Al-Garadi et al. “A Survey of Machine
and Deep Learning Methods for Internet of Things (IoT)
Security”. In: IEEE Communications Surveys & Tutorials
(2020).

[28] Vahid Garousi et al. “Testing embedded software: A survey
of the literature”. In: Information and Software Technology
(2018).

[29] Connor Glosner and Aravind Machiry. “FUZZUER: En-
abling Fuzzing of UEFI Interfaces on EDK-2”. In: Proceed-
ings of the Network and Distributed System Security (NDSS)
Symposium 2025. 2025.

[30] Patrice Godefroid. “Fuzzing: Hack, art, and science”. In:
Communications of the ACM (2020).

[31] Zhijie Gui et al. “Firmcorn: Vulnerability-oriented fuzzing
of iot firmware via optimized virtual execution”. In: IEEE
Access 8 (2020). Publisher: IEEE, pp. 29826–29841.

[32] Eric Gustafson et al. “Toward the Analysis of Embedded
Firmware through Automated Re-hosting”. In: 22nd Inter-
national Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2019). 2019.

[33] Thomas A Henzinger and Joseph Sifakis. “The embedded
systems design challenge”. In: FM 2006: Formal Methods:
14th International Symposium on Formal Methods, Hamil-
ton, Canada, August 21-27, 2006. Proceedings 14. 2006.

[34] Markus Kammerstetter, Daniel Burian, and Wolfgang Kast-
ner. “Embedded security testing with peripheral device
caching and runtime program state approximation”. In: 10th
International Conference on Emerging Security Information,
Systems and Technologies (SECUWARE). 2016.

[35] Markus Kammerstetter, Christian Platzer, and Wolfgang
Kastner. “Prospect: peripheral proxying supported embed-
ded code testing”. In: Proceedings of the 9th ACM sympo-
sium on Information, computer and communications secu-
rity. 2014.

[36] Mingeun Kim et al. “FirmAE: Towards Large-Scale Emu-
lation of IoT Firmware for Dynamic Analysis”. In: Annual
Computer Security Applications Conference (2020).

[37] KLEE. URL: http : / / klee . github . io/ (visited on
02/07/2023).

[38] George Klees et al. “Evaluating fuzz testing”. In: Proceed-
ings of the 2018 ACM SIGSAC conference on computer and
communications security. 2018.

[39] Karl Koscher, Tadayoshi Kohno, and David Molnar. “SUR-
ROGATES: Enabling Near-Real-Time Dynamic Analyses
of Embedded Systems”. In: 9th USENIX Workshop on Of-
fensive Technologies (WOOT ’15). 2015.

[40] Tamás Kovácsházy et al. “System architecture for Internet of
Things with the extensive use of embedded virtualization”.
In: 2013 IEEE 4th International Conference on Cognitive
Infocommunications (CogInfoCom). 2013.

[41] Tomasz Kuchta and Bartosz Zator. “Auto Off-Target: En-
abling Thorough and Scalable Testing for Complex Software
Systems”. In: Proceedings of the 37th IEEE/ACM Inter-
national Conference on Automated Software Engineering.
2023.

[42] Sekar Kulandaivel et al. “CANNON: Reliable and Stealthy
Remote Shutdown Attacks via Unaltered Automotive Mi-
crocontrollers”. In: 2021 IEEE Symposium on Security and
Privacy (SP). 2021.

[43] Chongqing Lei et al. “A Friend’s Eye is A Good Mirror: Syn-
thesizing MCU Peripheral Models from Peripheral Drivers”.
In: 33rd USENIX Security Symposium (USENIX Security
24). 2024.

[44] Hao Li et al. “FEMU: A firmware-based emulation frame-
work for SoC verification”. In: Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/-
software codesign and system synthesis. 2010.

[45] Wenqiang Li et al. “From library portability to para-
rehosting: Natively executing microcontroller software on
commodity hardware”. In: arXiv preprint arXiv:2107.12867
(2021).

https://c-for-dummies.com/blog/?p=5711
https://c-for-dummies.com/blog/?p=5711
 http://freertos.org
http://klee.github.io/

[46] Jay P Lim and Santosh Nagarakatte. “Automatic equivalence
checking for assembly implementations of cryptography li-
braries”. In: 2019 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). 2019.

[47] Qiang Liu et al. “FirmGuide: Boosting the Capability of
Rehosting Embedded Linux Kernels through Model-Guided
Kernel Execution”. In: 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE).
2021.

[48] Yuwei Liu et al. “AFGen: Whole-Function Fuzzing for
Applications and Libraries”. In: 2024 IEEE Symposium on
Security and Privacy (SP). 2024.

[49] Zheyu Ma et al. “Printfuzz: Fuzzing linux drivers via au-
tomated virtual device simulation”. In: Proceedings of the
31st ACM SIGSOFT International Symposium on Software
Testing and Analysis. 2022.

[50] Aravind Machiry et al. “DR. Checker: a soundy analysis for
linux kernel drivers”. In: 26th USENIX Security Symposium
(Usenix 2017). 2017.

[51] P.S. Magnusson et al. “Simics: A full system simulation
platform”. In: Computer (2002).

[52] Valentin J.M. Manès et al. “The Art, Science, and Engi-
neering of Fuzzing: A Survey”. In: IEEE Transactions on
Software Engineering (2021).

[53] Valentin JM Manès et al. “The art, science, and engineering
of fuzzing: A survey”. In: IEEE Transactions on Software
Engineering (2019).

[54] Joel Margolis et al. “An in-depth analysis of the mirai bot-
net”. In: 2017 International Conference on Software Secu-
rity and Assurance (ICSSA). 2017.

[55] Trevor Martin. The designer’s guide to the Cortex-M pro-
cessor family. Newnes, 2016.

[56] Marius Muench et al. “Avatar 2: A multi-target orchestration
platform”. In: Proc. Workshop Binary Anal. Res.(Colocated
NDSS Symp.) Vol. 18. 2018.

[57] Marius Muench et al. “What You Corrupt Is Not What You
Crash: Challenges in Fuzzing Embedded Devices”. In: Net-
work and Distributed System Security Symposium (NDSS).
2018.

[58] Arif Ali Mughal. “The Art of Cybersecurity: Defense in
Depth Strategy for Robust Protection”. In: International
Journal of Intelligent Automation and Computing 1.1 (2018),
pp. 1–20.

[59] Siddharth Muralee et al. “ARGUS: A Framework for Staged
Static Taint Analysis of GitHub Workflows and Actions”.
In: 32nd USENIX Security Symposium (USENIX Security
23). 2023.

[60] Aniruddhan Murali et al. “Fuzzslice: Pruning false positives
in static analysis warnings through function-level fuzzing”.
In: Proceedings of the 46th IEEE/ACM International Con-
ference on Software Engineering. 2024, pp. 1–13.

[61] Eoin O’driscoll and Garret E O’donnell. “Industrial power
and energy metering–a state-of-the-art review”. In: Journal
of Cleaner Production (2013).

[62] Aditya Vardhan Padala, Saurabh Bagchi, and Aravind Ku-
mar Machiry. “Detection of Device Triggerable Vulnera-
bilities in Android Companion Apps through Interactive
Triaging”. In: Proceedings of the 40th ACM/SIGAPP Sym-
posium on Applied Computing. 2025.

[63] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. “T-Fuzz:
fuzzing by program transformation”. In: 2018 IEEE Sympo-
sium on Security and Privacy (SP). 2018.

[64] Dipika Roy Prapti et al. “Internet of Things (IoT)-based
aquaculture: An overview of IoT application on water qual-
ity monitoring”. In: Reviews in Aquaculture (2022).

[65] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks.
“LOCKSMITH: context-sensitive correlation analysis for
race detection”. In: SIGPLAN Not. (June 2006).

[66] QEMU. https://www.qemu.org/.

[67] Real Time Operating System (RTOS) | Microsoft Azure —
azure.microsoft.com. https://azure.microsoft.com/
en-us/products/rtos. [Accessed 07-02-2024].

[68] Edwin D Reilly. “Memory-mapped I/O”. In: Encyclopedia
of Computer Science. 2003, pp. 1152–1152.

[69] Roman Rohleder. “Hands-on ghidra-a tutorial about the
software reverse engineering framework”. In: Proceedings
of the 3rd ACM Workshop on Software Protection. 2019.

[70] Michael Rüegg and Peter Sommerlad. “Refactoring towards
seams in C++”. In: 2012 7th International Workshop on
Automation of Software Test (AST). 2012.

[71] Jan Ruge et al. “Frankenstein: Advanced wireless fuzzing to
exploit new bluetooth escalation targets”. In: 29th USENIX
Security Symposium (Usenix 20). 2020.

[72] Rust4Embedded Bug Survey. https : / / docs . google .
com / spreadsheets / d / e / 2PACX - 1vQndSwy _
CDJFeUCkc1PdUjF2j _ q8eijUeRl8tjkM _ C4D7mkGAK -
QJssO9j9JtIT8lSYfBNKg9-QUG7p/pubhtml.

[73] SafeRTOS - an independently certified kernel for safety crit-
ical applications IEC61508 EN62304 and FDA 510(k) —
freertos.org. https://www.freertos.org/FreeRTOS-
Plus/Safety_Critical_Certified/SafeRTOS.html.
[Accessed 16-02-2024].

[74] Tobias Scharnowski et al. “Fuzzware: Using Precise
MMIO Modeling for Effective Firmware Fuzzing”. In: 31st
USENIX Security Symposium (USENIX Security 22). 2022.

[75] Lukas Seidel, Dominik Christian Maier, and Marius Muench.
“Forming Faster Firmware Fuzzers.” In: 32nd USENIX Se-
curity Symposium (USENIX 23). 2023.

[76] Semiconductor Partners - FreeRTOS — freertos.org. https:
//www.freertos.org/partners/semiconductor.html.
[Accessed 07-02-2024].

[77] Konstantin Serebryany et al. “AddressSanitizer: A Fast Ad-
dress Sanity Checker”. In: 37th USENIX Annual Technical
Conference (USENIX ATC 12). 2012.

[78] Ayushi Sharma et al. “Rust for Embedded Systems: Current
State, Challenges and Open Problems”. In: Proceedings of
the 31st ACM Conference on Computer and Communica-
tions Security (CCS). 2024.

https://www.qemu.org/
https://azure.microsoft.com/en-us/products/rtos
https://azure.microsoft.com/en-us/products/rtos
https://docs.google.com/spreadsheets/d/e/2PACX-1vQndSwy_CDJFeUCkc1PdUjF2j_q8eijUeRl8tjkM_C4D7mkGAK-QJssO9j9JtIT8lSYfBNKg9-QUG7p/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vQndSwy_CDJFeUCkc1PdUjF2j_q8eijUeRl8tjkM_C4D7mkGAK-QJssO9j9JtIT8lSYfBNKg9-QUG7p/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vQndSwy_CDJFeUCkc1PdUjF2j_q8eijUeRl8tjkM_C4D7mkGAK-QJssO9j9JtIT8lSYfBNKg9-QUG7p/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vQndSwy_CDJFeUCkc1PdUjF2j_q8eijUeRl8tjkM_C4D7mkGAK-QJssO9j9JtIT8lSYfBNKg9-QUG7p/pubhtml
https://www.freertos.org/FreeRTOS-Plus/Safety_Critical_Certified/SafeRTOS.html
https://www.freertos.org/FreeRTOS-Plus/Safety_Critical_Certified/SafeRTOS.html
https://www.freertos.org/partners/semiconductor.html
https://www.freertos.org/partners/semiconductor.html

[79] Ayushi Sharma et al. “Rust for embedded systems: current
state, challenges and open problems”. In: arXiv preprint
arXiv:2311.05063 (2023).

[80] Mingjie Shen. “Finding 709 Defects in 258 Projects: An
Experience Report on Applying CodeQL to Open-Source
Embedded Software (Experience Paper) (ISSTA 2025 - Re-
search Papers) - ISSTA 2025”. In: ISSTA 2025 (2025).

[81] Mingjie Shen, James C. Davis, and Aravind Machiry. “To-
wards Automated Identification of Layering Violations in
Embedded Applications (WIP)”. In: Proceedings of the 24th
ACM SIGPLAN/SIGBED International Conference on Lan-
guages, Compilers, and Tools for Embedded Systems. 2023.

[82] Dokyung Song et al. “SoK: Sanitizing for Security”. In:
2019 IEEE Symposium on Security and Privacy (S&P).
2019.

[83] NB Soni and Jaideep Saraswat. “A review of IoT devices
for traffic management system”. In: 2017 international con-
ference on intelligent sustainable systems (ICISS). 2017.

[84] Chad Spensky et al. “Conware: Automated modeling of
hardware peripherals”. In: Proceedings of the 2021 ACM
Asia conference on computer and communications security
(AsiaCCS). 2021.

[85] Jayashree Srinivasan et al. “Towards rehosting embedded
applications as linux applications”. In: 2023 53rd Annual
IEEE/IFIP International Conference on Dependable Sys-
tems and Networks-Supplemental Volume (DSN-S). 2023.

[86] Prashast Srivastava et al. “FirmFuzz: Automated IoT
Firmware Introspection and Analysis”. In: Proceedings of
the 2nd International ACM Workshop on Security and Pri-
vacy for the Internet-of-Things (2019).

[87] John A Stankovic and R Rajkumar. “Real-Time Operating
Systems”. In: Real-Time Systems (2004).

[88] Supported Platforms 2014; NuttX latest documentation —
nuttx.apache.org. https://nuttx.apache.org/docs/
10.0.1/introduction/supported_platforms.html.
[Accessed 07-02-2024].

[89] SVD Description (*.svd) Format. URL: https : / / arm -
software.github.io/CMSIS%5C_5/SVD/html/svd%5C_
Format%5C_pg.html.

[90] Sai Ritvik Tanksalkar et al. “LEMIX: Enabling Testing of
Embedded Applications as Linux Applications (Extended
Report)”. In: arXiv preprint arXiv:2503.17588 (2025).

[91] Hui Jun Tay et al. “Greenhouse: Single-Service Rehosting of
Linux-Based Firmware Binaries in User-Space Emulation”.
In: 32nd USENIX Security Symposium (USENIX Security
23). 2023.

[92] timlt. What is Microsoft Azure RTOS? —
learn.microsoft.com. https : / / learn . microsoft .
com/en- us/azure/rtos/overview- rtos. [Accessed
16-02-2024].

[93] Fadi Al-Turjman and Joel Poncha Lemayian. “Intelligence,
security, and vehicular sensor networks in internet of things
(IoT)-enabled smart-cities: An overview”. In: Computers &
Electrical Engineering (2020).

[94] URGENT/11. en-US. https : / / www . armis . com /
research/urgent11/. (Visited on 07/22/2023).

[95] William Von Hagen. The definitive guide to GCC. Apress,
2011.

[96] VxWorks Safety Platforms — windriver.com. https://
www . windriver . com / products / vxworks / safety -
platforms. [Accessed 16-02-2024].

[97] Elecia White. Making Embedded Systems: Design Patterns
for Great Software. 2011.

[98] Christopher Wright et al. “Challenges in Firmware Re-
Hosting, Emulation, and Analysis”. In: ACM Comput. Surv.
(2021).

[99] Guest Writer. The 5 Worst Examples of IoT Hacking
and Vulnerabilities in Recorded History. en-US. https:
/ / www . iotforall . com / 5 - worst - iot - hacking -
vulnerabilities. June 2020. (Visited on 05/01/2023).

[100] Oualid Zaazaa and Hanan El Bakkali. “Dynamic vulner-
ability detection approaches and tools: State of the Art”.
In: 2020 Fourth International Conference On Intelligent
Computing in Data Sciences (ICDS). 2020.

[101] Jonas Zaddach et al. “AVATAR: A Framework to Sup-
port Dynamic Security Analysis of Embedded Systems’
Firmwares.” In: NDSS. 2014.

[102] Zephyr Project | Ecosystem Vendors — zephyrproject.org.
https : / / zephyrproject . org / ecosystem - vendor -
offerings/. [Accessed 07-02-2024].

[103] ZephyrRTOS. https://zephyrproject.org/.

[104] Mingrui Zhang et al. “IntelliGen: automatic driver synthesis
for fuzz testing”. In: Proceedings of the 43rd International
Conference on Software Engineering: Software Engineering
in Practice. 2021.

[105] Yaowen Zheng et al. “FIRM-AFL: High-Throughput Grey-
box Fuzzing of IoT Firmware via Augmented Process Em-
ulation”. In: 28th USENIX Security Symposium (USENIX
Security 19). 2019.

[106] Wei Zhou et al. “Automatic Firmware Emulation through
Invalidity-guided Knowledge Inference”. In: 30th USENIX
Security Symposium (USENIX Security 21). 2021.

A Appendix

This appendix includes additional details such as: Table 7
(bugs and developer responses), Table 8 (bug categories from
the embedded survey), Listing 4 and Listing 5 (inline assem-
bly handling), Listing 6 (board-dependent layout execution),
and Listing 9 (a bug found by LEMIX).

Further listings, figures, and tables referenced in the main
paper are available in our extended report [90].

https://nuttx.apache.org/docs/10.0.1/introduction/supported_platforms.html
https://nuttx.apache.org/docs/10.0.1/introduction/supported_platforms.html
https://arm-software.github.io/CMSIS%5C_5/SVD/html/svd%5C_Format%5C_pg.html
https://arm-software.github.io/CMSIS%5C_5/SVD/html/svd%5C_Format%5C_pg.html
https://arm-software.github.io/CMSIS%5C_5/SVD/html/svd%5C_Format%5C_pg.html
https://learn.microsoft.com/en-us/azure/rtos/overview-rtos
https://learn.microsoft.com/en-us/azure/rtos/overview-rtos
https://www.armis.com/research/urgent11/
https://www.armis.com/research/urgent11/
https://www.windriver.com/products/vxworks/safety-platforms
https://www.windriver.com/products/vxworks/safety-platforms
https://www.windriver.com/products/vxworks/safety-platforms
https://www.iotforall.com/5-worst-iot-hacking-vulnerabilities
https://www.iotforall.com/5-worst-iot-hacking-vulnerabilities
https://www.iotforall.com/5-worst-iot-hacking-vulnerabilities
https://zephyrproject.org/ecosystem-vendor-offerings/
https://zephyrproject.org/ecosystem-vendor-offerings/
https://zephyrproject.org/

Table 7: Summary of all reported bugs and their statuses - ¤ : acknowledged and PR merged, ± : acknowledged, ¦ : no
response (issue open), º : not acknowledged as bug and closed.

App ID Bug Description Status of Bug

f2 Assert Failure Inconsistent use of configASSERT FreeRTOS Kernel ¤

f2 Assert Failure Assert Failure in ble_event ¦

f2 Build Related Conflict of min and max from stl_algo.h in HeartRateService.h ¤

f3 Div By Zero FPE in RCC_GetClocksFreq due to missing MMIO Checks ¤

f3 Null Deref Null Deref in ucFlash_Write ¦

f3 OOB Write Potential undefined behavior on overlapping copy in mem_cpy ¦

f4 OOB Write Potential OOB memcpy in tud_msc_read10_cb ¤

f4 DoS Infinite Loop in port_event_handle due to missing MMIO Checks º

f5 OOB Read Potential OOB Read & Null Deref due to missing MMIO Checks in board_get_unique_id ¦

n1 Build Related Buggy handling of unsigned long in vsprintf_internal ¤

n3 Build Related Compilation failure due to improper handling of CAN utils lely-core package ¤

n4 OOB Write Undefined behaviour on partial overlapping copy in sim_copyfullstate ¤

n5 DoS Infinite Loop in up_enable_dcache due to invalid MMIOs ¦

z1 OOB Write Stack Overflow in buf_char_out if CONFIG_PRINTK_BUFFER_SIZE is 0 ±

z1 Null Deref Null dereference in z_nrf_clock_control_lf_on ±

z2 OOB Write
The extract_conversion function in z_cbvprintf_impl can cause a potential 1 byte OOB

read when the format string ends with a % character
±

z2 OOB Write
If bpe points to a single byte, encode_uint may cause a 1-byte underflow write by

decrementing and dereferencing bp in the loop.
±

z2 OOB Write Unchecked length can cause potential overflow ±

z3 OOB Read OOB reads in lv_txt_utf8_next ¤

z3 OOB Read Reads past the buffer possible in u8_to_dec ±

z3 Div By Zero Potential div by zero by passing 0 as data frame size º

t4 Div By Zero division by zero is possible given RCC->PLLCFGR is 0 ¤

Table 8: Our analysis of the CVEs from the survey [72] conducted by Rust4Embedded (Extended Report) [79] indicates that
only 11 out of 71 (15%) require high-fidelity execution (i.e precise hardware modeling).

RTOS CATEGORY Low Fidelity High Fidelity

BOF 3 0
OOB 5 0
UAF 4 0

Int Overflow 8 1
FreeRTOS

Privelege Escalation 0 1

BOF 10 2
OOB 5 1

Int Overflow 3 1
DoS 4 1

Privelege Escalation 0 2

Zephyr

NULL Deref 4 0

BOF 2 1
OOB 3 0

NULL Deref 5 0
DOS 2 1

RIOT

logic 2 0

Total 60 11

1 __STATIC_FORCEINLINE uint32_t __get_IPSR(void)
2 {
3 uint32_t result;
4 Ô__ASM volatile ("MRS %0, ipsr" : "=r" (result));
5 � result = random() % 2; �

6 return result;
7 }
8 #define FURI_IS_IRQ_MODE() ({__get_IPSR() != 0}) §

9

10 bool furi_kernel_is_irq_or_masked(void) {
11 return {FURI_IS_IRQ_MODE()};}
12 int main(void) {
13 // furi_check handles assertions
14 furi_check(
15 {!furi_kernel_is_irq_or_masked()} §

16);
17 return 0;
18 }

Listing 4: An example from Flipperzero shows inline assem-
bly (Ô) removed by LEMIX, and injected code (�) to reini-
tialize with a random value. Highlighted checks (§) verify
the IPSR to ensure execution is not in IRQ context.

1 __ALIGN(16)
2 static const uint16_t delay_machine_code[] = {
3 // SUBS r0, #loop_cycles
4 0x3800 + NRFX_COREDEP_DELAY_US_LOOP_CYCLES,
5 0xd8fd, // BHI .-2
6 0x4770 // BX LR
7 };
8

9 typedef void (* delay_func_t)(uint32_t);
10 const delay_func_t delay_cycles =
11 // Set LSB to 1 to execute the code in the
12 // Thumb mode.
13 (delay_func_t)(delay_machine_code) | 1));
14 uint32_t cycles =
15 time_us * NRFX_DELAY_CPU_FREQ_MHZ;
16 delay_cycles(cycles);

Listing 5: An example of inline assembly masked inside hex-
adecimal machine code in Infinitime.

1 static void z_sys_init_run_level(
2 enum init_level level
3)
4 {
5 static const struct init_entry *levels[] = {
6 __init_EARLY_start,
7 __init_PRE_KERNEL_1_start,
8 __init_PRE_KERNEL_2_start,
9 __init_POST_KERNEL_start,

10 __init_APPLICATION_start,
11 };
12 const struct init_entry *entry;
13 // The entries are function pointers that
14 // are expected to be placed in memory in
15 // the correct order. This ensures that
16 // the comparison between the current entry
17 // and the next one is valid.
18 for (entry = levels[level]; entry <
19 levels[level+1]; entry++) {
20 dev->state->initialized = true;
21 (void)entry->init_fn.sys();
22 }
23 }
24 }

Listing 6: Listing shows Layout Specific Execution found
in one of Zephyr Kernel’s initialization routines. The kernel
expects function pointers to be present in adjacent memory
locations as directed by Board Specific Linker Scripts.

1 uint8_t ull_scan_rsp_set(struct ll_adv_set *adv,
2 uint8_t len, void *data)
3 {
4 struct pdu_adv *pdu;
5 pdu = lll_adv_scan_rsp_alloc(&adv->lll, &idx);
6 /* update scan pdu fields. */
7 ...
8 /* len is attacker controlled */
9 pdu->len = BDADDR_SIZE + len; ´

10 /* OOB write at scan_rsp.data[0] */
11 memcpy(&pdu->scan_rsp.data[0], data, len); q

12 ...
13 return 0;
14 }

Listing 7: LEMIX can detect the low-fidelity CVE-2021-
3581, where unchecked attacker-controlled length causes
OOB writes.

1 /* validate syscall limit */
2 ldr ip, =K_SYSCALL_LIMIT
3 cmp r6, ip
4 /* The supplied syscall_id must be lower than the
5 * limit (Requires unsigned integer comparison) */
6 blt valid_syscall_id q

7 /* bad syscall id. Set arg1 to bad id and set
8 call_id to SYSCALL_BAD */
9 str r6, [r0]

10 ldr r6, =K_SYSCALL_BAD

Listing 8: LEMIX cannot detect the high-fidelity bug CVE-
2020-10027, which exploits subtle logic flaws in ARM syscall
validation for privilege escalation.

1 #ifndef CONFIG_PRINTK_BUFFER_SIZE
2 #define CONFIG_PRINTK_BUFFER_SIZE 0 .

3 struct buf_out_context {
4 char buf[CONFIG_PRINTK_BUFFER_SIZE];
5 unsigned int buf_count;
6 };
7

8 static int buf_char_out(int c, void *ctx_p) {
9 struct buf_out_context *ctx = ctx_p;

10 ctx->buf[ctx->buf_count] = c; q

11 // buf_count incremented before the check
12 ++ctx->buf_count; þ

13 if (ctx->buf_count == CONFIG_PRINTK_BUFFER_SIZE) {
14 buf_flush(ctx);
15 }
16 return c;
17 }

Listing 9: OOB write in Zephyr function buf_char_out.

	Introduction
	Background and Threat Model
	Type-2 Embedded Systems
	Portability Layers
	Threat Model

	Motivation
	Execution Fidelity (EF)
	Bug Manifestation Fidelity (BMF)
	Empirical Data
	BMF For Embedded System Software

	The Idea

	Lemix
	Phase 1: Analysis-Friendly LeApp
	Handling execution semantics using LPL (Ch 1)
	Interactive Resolution for Retargeting (Ch 2)
	Opportunistic Symbol Resolution
	Peripheral Modeling and Instrumentation (Ch 3)
	Dynamic Analysis Assistance Instrumentation

	Phase 2: Testing
	Whole Program Fuzzing
	Function Level Fuzzing

	Evaluation
	Dataset and Setup
	RQ1: Converting to Linux Applications
	Methodology
	Results

	RQ2: Peripheral Handling
	Methodology
	Results

	RQ3: Testing LeApps
	Methodology
	Results

	RQ4: Ablation Study
	Methodology
	Results

	RQ5: Comparative Evaluation
	Methodology
	Results

	RQ6: False Positive Analysis
	Methodology
	Results

	Limitations and Future Work
	Related Work
	Conclusion
	Ethics Considerations
	Open Science
	Acknowledgments
	Appendix

