
Towards Automated Identification of Layering
Violations in Embedded Applications (WIP)

Mingjie Shen
shen497@purdue.edu

Purdue University
West Lafayette, IN, USA

James C. Davis
davisjam@purdue.edu

Purdue University
West Lafayette, IN, USA

Aravind Machiry
amachiry@purdue.edu

Purdue University
West Lafayette, IN, USA

Abstract

For portability, embedded systems software follows a lay-
ered design to reduce dependence on particular hardware
behavior. We consider the problem of identifying layering
violations: instances where the embedded application ac-
cesses non-adjacent layers. This paper presents our prelimi-
nary work to detect a class of layering violations called Non
Conventional MMIO Accesses (NCMAs). We find them by
searching for direct Memory Mapped Input Output (MMIO)
accesses made outside of the Hardware Abstraction Layer
(HAL). For evaluation, we curated a list of 988 applications
spanning 5 Real Time Operating Systems (RTOSes) – the
first large dataset of compilable embedded applications. Our
system identified 369 NCMAs. We reported these issues to
the corresponding developers and found interesting reasons
for committing layering violations. We have open-sourced
our tool and the collected dataset to foster future research.

CCS Concepts: • Computer systems organization →

Firmware; Embedded software.

Keywords: Embedded Systems, Portability, Firmware, Hard-
ware Abstraction Layer, Static Analysis

ACM Reference Format:

Mingjie Shen, James C. Davis, and Aravind Machiry. 2023. Towards

Automated Identification of Layering Violations in EmbeddedAppli-

cations (WIP). In Proceedings of the 24th ACM SIGPLAN/SIGBED In-

ternational Conference on Languages, Compilers, and Tools for Embed-

ded Systems (LCTES ’23), June 18, 2023, Orlando, FL, USA. ACM, New

York, NY, USA, 5 pages. h�ps://doi.org/10.1145/3589610.3596271

1 Introduction

Embedded software (i.e., “IoT/cyber-physical”) enables criti-
cal systems [12, 24]. As explained by the recent work [14],
embedded systems can be classified into three categories
based on their software architecture. This work focuses on

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

LCTES ’23, June 18, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0174-0/23/06.

h�ps://doi.org/10.1145/3589610.3596271

Task1 Task2 Taskm

RTOS Library / Kernel

HAL
P1

Pe
rip

he
ra

ls
Ap

pl
ic

at
io

n
C

om
po

ne
nt

s
P2 Pn

N
on-conventional
M

M
IO

 access

Conventional MMIO access

Figure 1. Software design of Type-2 Embedded Systems.
Application tasks execute on a RTOS, which uses HAL to
access peripherals. Conventional MMIO access (green) uses
HAL, while NCMAs (red) bypass HAL via direct read/write
to MMIO addresses.

deeply embedded or Type-2 systems, whose ecosystem has
a lot of diversity in terms of hardware [14, 28] (Micro Con-
troller Unit (MCU) and peripherals) and supported software.
For instance, there are 31 different Real Time Operating Sys-
tems (RTOSes) [1].
The time required to port an embedded application to a

new MCU or peripheral affects system cost – a major fac-
tor in embedded systems engineering [10]. To reduce the
difficulty of porting, Figure 1 illustrates the typical layered
design: the embedded software application is organized into
layers that communicate only with adjacent layers [8]. If
applications follow this design, it simplifies supporting a
new MCU, as only one layer is impacted. When applications
commit layering violations, portability degrades.
In this paper, we present preliminary work toward auto-

matically detecting layering violations in embedded software.
Specifically, we focus on a layering violation related to hard-
ware or peripheral access, called a Non Conventional MMIO
Access (NCMA). Most peripherals are accessed by Memory
Mapped Input Output (MMIO) [17]: they are addressed by
the same address space as the main memory and are accessed

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

143

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0009-0003-4393-6992
https://orcid.org/0000-0003-2495-686X
https://orcid.org/0000-0001-5124-6818
https://doi.org/10.1145/3589610.3596271
https://doi.org/10.1145/3589610.3596271

LCTES ’23, June 18, 2023, Orlando, FL, USA Mingjie Shen, James C. Davis, and Aravind Machiry

via regular load/store instructions. An application should ac-
cess these memory regions through a Hardware Abstraction
Layer (HAL), e.g., exposed through SDK functions. Figure 1
depicts conventional access and NCMA layering violations.
We designed a static analysis tool to automatically de-

tect NCMAs in embedded applications. According to the lay-
ered design, the only accesses to MMIO regions should come
from functions in or below the HAL. We use call graph anal-
ysis to identify functions in the HAL. We then find MMIO
accesses made outside of the HAL functions – these are pos-
sible NCMAs.
To evaluate the approach, we collected 988 applications

spanning 5 RTOSes – the first large dataset of compilable em-
bedded applications. In this dataset, we identified 369 NCMAs.
We reported these issues to maintainers and found two dif-
ferent rationales for NCMAs: lack of concern for portability,
and workarounds for undesirable behaviors of HAL APIs.

2 Background and Motivation

Listing 1 shows an LED application in Zephyr RTOS that uses
GPIOAPI gpio_pin_toggle_dt(&led) (a HAL function) to toggle
an LED pin. This application compiles and runs on all boards
supported by Zephyr [31] without modifying the applica-
tion. Zephyr achieves this through abstraction layers (e.g.,
peripheral APIs), which rely on the vendors’ HAL functions.
Figure 2 shows the call graph of the application in Listing 1,
showing Zephyr abstractions for vendor-specific HALs.
On the other hand, in ncma_example() (also in Listing 1),

there is direct access (F) to the timer peripheral through an
MMIO address – by first casting it to a struct and accessing
its member. The application directly accesses peripherals
through hardcoded MMIO addresses (o), violating the prin-
ciple of layered design.

3 HalVD: Automated Detection of NCMAs

Given an embedded application, our goal is to automati-
cally identify all NCMAs and provide source-level reports,
e.g., “There is an NCMA in function X at line Y in file Z”.

Figure 1 shows the high-level idea of conventional MMIO
accesses and NCMAs. Given the application’s source code,
we automatically convert it to llvm bitcode using a custom
build monitoring tool. Next, we identify all MMIO accesses
by performing a lightweight analysis of the llvm IR. Finally,
we use heuristics on the call graph of the application to
determine whether a given MMIO access is a NCMA.
Bitcode Generation via Build Monitoring:We want to
use the llvm compiler infrastructure to implement our anal-
ysis. However, it requires bitcode of the source program.
Generating whole program bitcode (one bitcode file for the
entire embedded application) is challenging as it requires
modifying build scripts and dealing with toolchain-specific
aspects. Prior work handled this manually [7] – we (partially)
automate it.

static const struct gpio_dt_spec led =

GPIO_DT_SPEC_GET(LED0_NODE, gpios);↩→

int main() {

int ret; ...

while (1) {

ret = gpio_pin_toggle_dt(&led);

if (ret < 0) return;

k_msleep(SLEEP_TIME_MS);

}

}

/* -- */

typedef struct {... __IOM uint32_t CC[6]; } NRF_TIMER_Type;

#define NRF_TIMER2 ((NRF_TIMER_Type*) 0x4000A000UL o)

void ncma_example() {

SetVersion(FNRF_TIMER2->CC[0]);

}

Listing 1. An LED blinker application main() that follows
a layered design – interacts with only the adjacent layer
through the function gpio_pin_toggle_dt(&led) (highlighted)
to periodically toggle an LED pin. And an example of NCMA
(F) ncma_example(): NRF_TIMER2->CC[0] is a struct member ac-
cess through the pointer NRF_TIMER2_BASE(=0x4000A000UL).

gpio_pin_toggle_dt()

gpio_pin_toggle() gpio_port_toggle_bits()

z_impl_gpio_port_toggle_bits()

api->port_toggle_bits()

gpio_stm32_port_toggle_bits()
gpio_nrfx_port_toggle_bits()

GPIO_TypeDef *gpio = ...;
gpio->ODR = gpio->ODR
 ^ pins;

nrf_gpio_port_out_read(
 NRF_GPIO_TYPE *p_reg)

return p_reg->OUT;

STM32
Nordic

...

Other MCUs

Zephyr's Peripheral APIs

Zephyr's Internal
Implementation

Vendors' HALs

main()Application

Figure 2. Call graph demonstrating the layered design of
the application in Listing 1. Each layer exposes functions to
the above layer and uses functions from the below layer.

We obtain whole program bitcode by using runtime build
monitoring based on wllvm [27]. Specifically, we monitor
the build process of a given embedded application to cap-
ture all invocations of the compiler. We then translate each
compilation command (i.e., object file generation), into the
corresponding bitcode generation command in clang. Fi-
nally, all the generated bitcode files are linked together into
the whole program bitcode.
Almost all embedded systems we examined used a gcc-

based toolchain, and the translation to clang involves four

144

Towards Automated Identification of Layering Violations in Embedded Applications (WIP) LCTES ’23, June 18, 2023, Orlando, FL, USA

define ... @ncma_example() {

%1 = load volatile i32, i32* inttoptr (i32 1073784128 to

i32*)↩→

tail call void @_ZN...10SetVersionEj(i32 noundef %1)

}

Listing 2. llvm bitcode of ncma_example(). %1 corresponds
to struct member access NRF_TIMER2->CC[0]. This load instruc-
tion’s pointer operand is the constant 1073784128 (0x4000A540).

challenges. (1) Certain non-standard C/C++ features, such as
variable-length struct members, are supported by gcc but not
by clang. We manually comment out this type of code. (2)
Several gcc-specific compilation options (e.g., -mfp16-format=)
are not supported by clang. We automatically remove them.
(3) Several gcc-specific link options (e.g., -spec=) are not sup-
ported by clang. We use gcc instead of clang for linking.
(4) Various other toolchain-specific aspects must be handled,
e.g., passing gcc’s standard system directories to clang. All
of these treatments are semantics-preserving.

In addition to being scalable, our technique is build-system
agnostic – it works for current or future build systems.
MMIO Access Finder via Constant Memory Addr: Previ-
ous work [22] shows that embedded systems access MMIO
addresses through constant (“hardcoded”) values; peripher-
als document the specific memory ranges with which they
will interact. In contrast, normal variables (global or local) are
rarely accessed via hardcoded addresses. For example, List-
ing 2 shows llvm bitcode of function ncma_example(). The load

instruction for MMIO access uses a constant address.
We design our technique based on this heuristic. Specifi-

cally, we perform static analysis on the bitcode of the firmware
and identify any memory access instruction, i.e., load, store,
getelementptr, whose pointer operand is a constant. We con-
sider such memory access instructions as MMIO accesses
and record the corresponding function. The set of all func-
tions identified in this step is denoted"5 .
NCMA Identification via Call Graph Analysis: NCMAs
occur in the non-HAL functions that directly access MMIO
addresses (⊆ "5).
We observe that HAL functions expose necessary func-

tionality and consequently are invoked by many functions.
Equivalently, in the call graph of the firmware, HAL func-
tions are reachable from many functions. A suitable measure
for this is the transitive in-degree (��C) of nodes in the call
graph. Figure 3 illustrates. HAL functions (green nodes) have
higher transitive in-degree than the other nodes. A parame-
ter _ < ��C may distinguish HAL from non-HAL functions.

Given the call graph of the application, we compute ��C of
each node (i.e., function) and apply _ to identify the non-HAL
subset. We note that call graphs are large (e.g., InfiniTime
firmware has 7,688 functions) and an accurate Θ(|+ |3) time
algorithm is impractically slow. We use a $ (|� |) time ran-
domized algorithm [5, 6] that estimates ��C of each node,

0
0

2
0

4
5

4

0

0
0

0
HAL
Functions

Non-HAL
Functions

Figure 3. A hypothetical example call graph. Each node
represents a function, while each edge points from caller to
callee. The number near each node shows its ��C . Assuming
nodes with ��C >= 4 are designated as HAL functions, this
example has three HAL functions (in green).

where |+ | and |� | are the number of vertices and edges in
the graph, respectively. We flag as NCMA any MMIO access
within the non-HAL subset.

4 Evaluation

We evaluated HalVD on embedded applications to assess its
effectiveness and performance in detecting NCMAs.
Dataset:We collected 988 applications running on five dif-
ferent RTOSes: FreeRTOS [2], Zephyr [26], Mbed OS [3],
Phoenix-RTOS [15], and NuttX [25]. These are real-world
firmware for smartwatches, keyboards, drones, example ap-
plications provided by developers of RTOSes, and ports of
well-known open-source tools. To our knowledge, this is
the first large dataset of compilable real-world embedded
applications. The first three columns of Table 1 summarizes
the embedded applications in our dataset.

We ran HalVD on the dataset to measure its effectiveness
in identifying NCMAs. It took < 3 seconds per application.
Effectiveness of MMIO Access Finder: Some functions
with MMIO accesses detected by HalVD are false positives
caused by HAL functions defined as C/C++ macros. There
was also a case where the hard-coded address was not an
MMIO address. To find if there are any false negatives, we
did a random sampling of a few functions (approximately
50) where HalVD did not find any MMIO accesses. We did
find false negatives, but they are expected and none of them
are NCMAs, exerting no negative influence on our final goal.
Effectiveness of NCMA Identification: Table 1 shows
the results of this experiment with _ set to 10. One author
manually evaluated the identified NCMAs. Our call-graph
based approach (Section 3) resulted in quite a few false pos-
itives and false negatives. False positives arise from HAL
functions that with ��C less than _. Certain HAL functions
which expose an uncommon peripheral may not be needed
by many functions and consequently have lower ��C . False
negatives result from application functions with ��C higher
than _. Some application functions may be needed by many

145

LCTES ’23, June 18, 2023, Orlando, FL, USA Mingjie Shen, James C. Davis, and Aravind Machiry

Table 1. Results of HalVD in finding NCMAs. Here, TP, FP, FN, and TN show the number of true positives, false positives, false
negatives, and true negatives NCMAs, respectively. Functions calling HAL macros and other false positives of MMIO Access
Finder are manually excluded before the evaluation of NCMA identification. # of NCMA Funcs = TP+ FN. # of MMIO Funcs =
TP + FP + FN + TN. KSLOC counts application code only, i.e., excludes the code of RTOSes, SDKs, and third-party libraries.

RTOS
Application Name

or Category

of

Apps

of Funcs

Calling

HAL Macros

TP FP FN TN

of

NCMA

Funcs

of

MMIO

Funcs

KSLOC

FreeRTOS

InfiniTime 1 21 2 17 1 127 3 147 29

ESP-IDF examples 417 0 0 17 0 82 0 99 102

MediaTek LinkIt examples 89 20 219 63 128 435 347 845 728

RP2040 applications 4 1 6 20 0 52 6 78 1

nRF52 keyboard firmware 1 0 0 4 2 58 2 64 21

Others (5 repos) 16 114 3 98 1 25 4 127 10

Zephyr Official examples 193 0 5 17 0 351 5 373 86

Phoenix-RTOS Ports of open-source tools 21 0 0 6 0 0 0 6 1,240

Mbed OS Official examples 35 0 1 11 1 129 2 142 8

NuttX Official examples 211 0 0 208 0 1,292 0 1,500 269

Total 988 156 236 461 133 2,551 369 3,381 2,494

other application functions. We plan to improve this imple-
mentation in our future work (Section 5).
Developers Response:We reported some of the NCMAs
found by HalVD to the developers and received a few re-
sponses. A few developers agreed that NCMAs needs to
be fixed. But, there were two cases where developers be-
lieve NCMAs were fine. (i) Certain applications support only
one hardware platform. Hence, non-portability resulting
from NCMAs is currently acceptable; (ii) Certain HAL APIs
provided by SDKs may have undesirable behaviors. For ex-
ample, a timer driver might clear a register before developers
can read its value. This forces developers to use NCMAs for
the desired functionality. HAL developers might use this
information to identify flaws in, and improve, their APIs.

A by-product of our work is thatHalVD found a bug in the
Bluetooth driver of Zephyr. A null pointer was used to access
struct members. Since the address zero is a constant (hard-
coded) address, this access is identified as an MMIO access
by HalVD. We fixed the bug and opened a pull request [19],
which has been merged into Zephyr’s main branch.

5 Future Work

We plan work in several directions:

• Formalizing layering violations:We plan to create a for-
mal definition of layering violations and prove properties
related to portability.

• Developer Studies: We plan a developer study to under-
stand the reasons for layering violations – this will inform
the design of embedded systems and SDKs.

• Implementation improvements:Our current call graph-
based HAL function identification has false positives and
negatives. We plan to explore techniques based on the di-
rectory structure of embedded applications to identifyHAL

functions. We will extend the framework to identify soft-
ware components other than HAL and detect layering
violations, enabling developers to organize their code bet-
ter.

6 Related Work

Jahnke et al. [11] presented a semi-automatic approach to
inspect Java source code to check for violations of hard-
ware restrictions. Schreiner et al. [18] compared methods
of recognizing software components in embedded systems,
which failed in the presence of layering violations. Mar-
tins Gomes et al. [13] studied the portability of several IoT
operating systems by manual code review. SEAPORT [30]
automatically assesses the portability of serverless appli-
cations.Existing work on detecting layering violations [9,
16, 29] cannot find NCMAs. To the best of our knowledge,
no previous work proposed an automatic tool for detecting
violations of HAL design in embedded applications.

Following layered design, in addition to making applica-
tions portable, also enables other retroactive security tech-
niques [4, 21, 23].

7 Conclusion

We proposed a static analysis toolHalVD that detects a class
of layering violations – NCMAs in embedded applications.
We built a dataset of compilable firmware containing 988
applications and found 369 cases of NCMAs. HalVD, the
dataset, and our wllvm are available at h�ps://github.com/

RTOSExploration/lctes2023-artifact and [20].

Acknowledgments

This work was partially funded by Rolls Royce under grant
number 40004429.

146

https://github.com/RTOSExploration/lctes2023-artifact
https://github.com/RTOSExploration/lctes2023-artifact

Towards Automated Identification of Layering Violations in Embedded Applications (WIP) LCTES ’23, June 18, 2023, Orlando, FL, USA

References
[1] [n. d.]. OSRTOS. h�ps://www.osrtos.com/

[2] Amazon Web Services, Inc. or its affiliates. 2023. FreeRTOS - Market

leading RTOS (Real Time Operating System) for embedded systems

with Internet of Things extensions. h�ps://www.freertos.org/index.

html

[3] Arm Limited (or its affiliates). 2023. Mbed OS. h�ps://os.mbed.com/

mbed-os/

[4] Abraham A. Clements, Eric Gustafson, Tobias Scharnowski, Paul

Grosen, David Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh

Bagchi, and Mathias Payer. 2020. HALucinator: Firmware Re-hosting

Through Abstraction Layer Emulation. In 29th USENIX Security Sym-

posium (USENIX Security 20). USENIX Association, 1201–1218. h�ps://

www.usenix.org/conference/usenixsecurity20/presentation/clements

[5] Edith Cohen. 1994. Estimating the Size of the Transitive Closure in

Linear Time. In Proceedings 35th Annual Symposium on Foundations of

Computer Science (FOCS). IEEE, 190–200.

[6] Edith Cohen. 1997. Size-Estimation Framework with Applications to

Transitive Closure and Reachability. J. Comput. System Sci. 55, 3 (Dec.

1997), 441–453. h�ps://doi.org/10.1006/jcss.1997.1534

[7] Nassim Corteggiani, Giovanni Camurati, and Aurélien Francillon. 2018.

Inception: System-Wide Security Testing of Real-World Embedded

Systems Software. In 27th USENIX Security Symposium (USENIX Se-

curity 18). USENIX Association, 309–326. h�ps://www.usenix.org/

conference/usenixsecurity18/presentation/corteggiani

[8] George Fairbanks. 2010. Just enough software architecture: a risk-driven

approach. Marshall & Brainerd.

[9] Maayan Goldstein and Itai Segall. 2015. Automatic and Continuous

Software Architecture Validation. In 2015 IEEE/ACM 37th IEEE In-

ternational Conference on Software Engineering (ICSE), Vol. 2. 59–68.

h�ps://doi.org/10.1109/ICSE.2015.135 ISSN: 1558-1225.

[10] Nikhil Krishna Gopalakrishna, Dharun Anandayuvaraj, Annan Detti,

Forrest Lee Bland, Sazzadur Rahaman, and James C Davis. 2022. “If

security is required”: Engineering and Security Practices for Ma-

chine Learning-based IoT Devices. In 2022 IEEE/ACM 4th International

Workshop on Software Engineering Research and Practices for the IoT

(SERP4IoT). IEEE, 1–8.

[11] J.H. Jahnke, J. Niere, and J. Wadsack. 2000. Automated quality analysis

of component software for embedded systems. In 8th International

Workshop on Program Comprehension Proceedings IWPC 2000. 18–26.

h�ps://doi.org/10.1109/WPC.2000.852476 ISSN: 1092-8138.

[12] Harika Kotha and V. Gupta. 2018. IoT Application, A Survey. In-

ternational Journal of Engineering & Technology 7 (March 2018), 891.

h�ps://doi.org/10.14419/ijet.v7i2.7.11089

[13] Renata Martins Gomes and Marcel Baunach. 2021. A Study on the

Portability of IoT Operating Systems. In 2021 GI Fachgruppentref-

fen Betriebssysteme (FGBS). Gesellschaft für Informatik e.V., Virtuell,

Germany. h�ps://doi.org/10.18420/fgbs2021f-01 Accepted: 2021-03-

11T10:45:36Z.

[14] Marius Muench, Jan Stijohann, Frank Kargl, Aurelien Francillon, and

Davide Balzarotti. 2018. What You Corrupt Is Not What You Crash:

Challenges in Fuzzing Embedded Devices. In Proceedings 2018 Network

and Distributed System Security Symposium (NDSS). Internet Society,

San Diego, CA. h�ps://doi.org/10.14722/ndss.2018.23166

[15] Phoenix Systems. 2021. Phoenix-RTOS. h�ps://phoenix-rtos.com/

[16] Santonu Sarkar, Girish Maskeri Rama, and Shubha R. 2006. A Method

for Detecting and Measuring Architectural Layering Violations in

Source Code. In 2006 13th Asia Pacific Software Engineering Conference

(APSEC’06). 165–172. h�ps://doi.org/10.1109/APSEC.2006.7 ISSN:

1530-1362.

[17] Tobias Scharnowski, Nils Bars, Moritz Schloegel, Eric Gustafson, Mar-

ius Muench, Giovanni Vigna, Christopher Kruegel, Thorsten Holz, and

Ali Abbasi. 2022. Fuzzware: Using Precise MMIO Modeling for Effec-

tive Firmware Fuzzing. In 31st USENIX Security Symposium (USENIX

Security 22). USENIX Association, 1239–1256. h�ps://www.usenix.

org/conference/usenixsecurity22/presentation/scharnowski

[18] Dietmar Schreiner, Gergö Barany, Markus Schordan, and Jens Knoop.

2013. Comparison of type-based and alias-based component recog-

nition for embedded systems software. International Journal on Soft-

ware Tools for Technology Transfer 15, 1 (Feb. 2013), 41–52. h�ps:

//doi.org/10.1007/s10009-012-0251-0

[19] Mingjie Shen. 2023. Null Pointer Dereference. h�ps://github.com/

zephyrproject-rtos/zephyr/pull/54847.

[20] Mingjie Shen, James C. Davis, and Aravind Machiry. 2023. Towards Au-

tomated Identification of Layering Violations in Embedded Applications

(WIP). h�ps://doi.org/10.5281/zenodo.7921796

[21] Chad Spensky, Aravind Machiry, Marcel Busch, Kevin Leach, Rick

Housley, Christopher Kruegel, and Giovanni Vigna. 2020. TRUST.IO:

Protecting Physical Interfaces on Cyber-physical Systems. In 2020

IEEE Conference on Communications and Network Security (CNS). 1–9.

h�ps://doi.org/10.1109/CNS48642.2020.9162246

[22] Chad Spensky, Aravind Machiry, Nilo Redini, Colin Unger, Graham

Foster, Evan Blasband, Hamed Okhravi, Christopher Kruegel, and

Giovanni Vigna. 2021. Conware: Automated Modeling of Hard-

ware Peripherals. In Proceedings of the 2021 ACM Asia Conference

on Computer and Communications Security (ASIA CCS ’21). Associa-

tion for Computing Machinery, New York, NY, USA, 95–109. h�ps:

//doi.org/10.1145/3433210.3437532

[23] Jayashree Srinivasan, Sai R Tanksalkar, Paschal C Amusuo, James C

Davis, and Aravind Machiry. 2023. Towards Rehosting Embedded Ap-

plications as Linux Applications. In 53rd Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN).

[24] Neil R Storey. 1996. Safety critical computer systems. Addison-Wesley

Longman Publishing Co., Inc.

[25] The Apache Software Foundation. 2022. Apache NuttX. h�ps:

//nu�x.apache.org/

[26] The Linux Foundation. 2023. Zephyr® Project. h�ps://www.

zephyrproject.org/

[27] Travis Vachon. 2019. Whole Program LLVM. h�ps://github.com/

travitch/whole-program-llvm.

[28] Elecia White. 2011. Making Embedded Systems: Design Patterns

for Great Software. "O’Reilly Media, Inc.". Google-Books-ID: No-

BrEAAAQBAJ.

[29] Sunny Wong, Yuanfang Cai, Miryung Kim, and Michael Dalton. 2011.

Detecting software modularity violations. In Proceedings of the 33rd

International Conference on Software Engineering (ICSE). ACM, Waikiki,

Honolulu HI USA, 411–420. h�ps://doi.org/10.1145/1985793.1985850

[30] Vladimir Yussupov, Uwe Breitenbücher, Ayhan Kaplan, and Frank

Leymann. 2020. SEAPORT: Assessing the Portability of Server-

less Applications:. In Proceedings of the 10th International Confer-

ence on Cloud Computing and Services Science. SCITEPRESS - Sci-

ence and Technology Publications, Prague, Czech Republic, 456–467.

h�ps://doi.org/10.5220/0009574104560467

[31] Zephyr® Project, a Linux Foundation Project. 2021. Applica-

tion Portability made easy with Zephyr OS and NXP (Webi-

nar). h�ps://www.zephyrproject.org/event/application-portability-

made-easy-with-zephyr-os-and-nxp-webinar/

Received 2023-03-16; accepted 2023-04-21

147

https://www.osrtos.com/
https://www.freertos.org/index.html
https://www.freertos.org/index.html
https://os.mbed.com/mbed-os/
https://os.mbed.com/mbed-os/
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://doi.org/10.1006/jcss.1997.1534
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani
https://doi.org/10.1109/ICSE.2015.135
https://doi.org/10.1109/WPC.2000.852476
https://doi.org/10.14419/ijet.v7i2.7.11089
https://doi.org/10.18420/fgbs2021f-01
https://doi.org/10.14722/ndss.2018.23166
https://phoenix-rtos.com/
https://doi.org/10.1109/APSEC.2006.7
https://www.usenix.org/conference/usenixsecurity22/presentation/scharnowski
https://www.usenix.org/conference/usenixsecurity22/presentation/scharnowski
https://doi.org/10.1007/s10009-012-0251-0
https://doi.org/10.1007/s10009-012-0251-0
https://github.com/zephyrproject-rtos/zephyr/pull/54847
https://github.com/zephyrproject-rtos/zephyr/pull/54847
https://doi.org/10.5281/zenodo.7921796
https://doi.org/10.1109/CNS48642.2020.9162246
https://doi.org/10.1145/3433210.3437532
https://doi.org/10.1145/3433210.3437532
https://nuttx.apache.org/
https://nuttx.apache.org/
https://www.zephyrproject.org/
https://www.zephyrproject.org/
https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm
https://doi.org/10.1145/1985793.1985850
https://doi.org/10.5220/0009574104560467
https://www.zephyrproject.org/event/application-portability-made-easy-with-zephyr-os-and-nxp-webinar/
https://www.zephyrproject.org/event/application-portability-made-easy-with-zephyr-os-and-nxp-webinar/

	Abstract
	1 Introduction
	2 Background and Motivation
	3 HalVD: Automated Detection of NCMAs
	4 Evaluation
	5 Future Work
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

