
Detection of Device Triggerable Vulnerabilities in Android
Companion Apps through Interactive Triaging

Aditya Vardhan Padala
Purdue University

United States
padalaa@purdue.edu

Saurabh Bagchi
Purdue University

United States
sbagchi@purdue.edu

Aravind Machiry
Purdue University

United States
amachiry@purdue.edu

Abstract
We are increasingly relying on Internet of Things (IoT) devices
for most of our daily tasks. However, IoT devices are riddled with
security vulnerabilities. Most IoT devices have an associated Mobile
Companion App (CApp) that enables users to control and access
these devices remotely in a user-friendly manner. CApps are man-
ufactured by the device vendors, and they trust these IoT devices.
This blind trust results in DtM vulnerabilities, where attackers can
compromise CApps by exploiting the corresponding IoT device. In
this paper, we present RearFind, the first static analysis technique
to find DtM vulnerabilities in CApps. We also design an interac-
tive triaging technique to reduce false positive alerts through user
feedback. Our evaluation shows that RearFind was able to find 5
new (i.e., previously unknown) DtM vulnerabilities. Our interactive
triaging technique was able to reduce the false positives by 12%.

CCS Concepts
• Security and privacy→ Software and application security.

Keywords
taint analysis, vulnerability detection, alert ranking

ACM Reference Format:
Aditya Vardhan Padala, Saurabh Bagchi, and Aravind Machiry. 2025. De-
tection of Device Triggerable Vulnerabilities in Android Companion Apps
through Interactive Triaging. In The 40th ACM/SIGAPP Symposium on Ap-
plied Computing (SAC ’25), March 31-April 4, 2025, Catania, Italy. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3672608.3707956

1 Introduction
Our dependence on Internet of Things (IoT) devices has significantly
increased, controlling various aspects of our daily lives, including
health [15] and homes [3]. The adoption of these devices has seen
rapid and extensive growth, with an estimated count of over 50
billion devices [1]. Unfortunately, these devices are riddled with
security vulnerabilities [4, 39].

IoT devices typically come with a Companion App (CApp), a mo-
bile app that controls several aspects, such as device configuration,
firmware updates, device status, and telemetry collection. CApps
are responsible for translating user actions (i.e., button press) into
a command encapsulated in a format expected by the target IoT

This work is licensed under a Creative Commons Attribution 4.0 International License.
SAC ’25, March 31-April 4, 2025, Catania, Italy
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0629-5/25/03
https://doi.org/10.1145/3672608.3707956

device. Consequently, many techniques [10, 38, 44] use CApps to
test IoT devices.

Problem. CApps are developed by the same organization that
manufactured the IoT device. Consequently, most CApps blindly
trust the data received from the devices. This blind trust on data
received from IoT devices results in the Device to Mobile (DtM)
vulnerabilities,

i.e., attackers on a compromised IoT device can gain control of
the CApp and consequently compromise the target Smartphone.
Listing 1 shows a real DtM vulnerability, where the SSID of IoT
devices (indicated by �) is eventually (flows indicated by�) used
in a JavaScript call (indicated by
). An attacker controlling an IoT
device can change its SSID to JavaScript code (e.g., Listing 1)

and make the above CApp execute it, resulting in Cross Site
Scripting (XSS) attack. These DtM vulnerabilities could have severe
security impact because CApps are often overprivileged, e.g., have
full network access. Furthermore, previous studies [2, 41] show that
CApps are often developed with poor development practices and
are prone to contain vulnerabilities. Existing vulnerability detection
works [2, 31] on CApps only focus on generic vulnerabilities and
privacy leaks. Consequently, as we show in §5, these techniques
fail to find such vulnerabilities.

This paper explores the security of CApps from the perspective
of the IoT device.

Specifically, we focus on identifying DtM vulnerabilities in
CApps. Dynamic analysis [18], specifically random testing [29],
is shown to be effective at vulnerability detection. However, effec-
tive testing [28] of Android apps is a known hard problem [12].

We design RearFind, a static analysis technique based on taint
tracking to detect DtM vulnerabilities. Given an Android app (i.e.,
APK[37]), we use call-graph-based analysis [20] to detect taint
sources and instrument the app with sink markers. We enhance ex-
isting state-of-the-art flow tracking tools, specifically FlowDroid [16]
with our sources and sinks to detect DtM vulnerabilities. It is well
known that static analysis techniques are prone to false positives.
To handle this, we design an interactive triaging technique wherein
we learn false positive flows from user input and present users with
alerts that are less likely to be false positives. Our evaluation shows
that RearFind is able to identify 5 new (previously unknown) DtM
vulnerabilities across 8 CApps.

We show that our interactive triaging technique is able to reduce
false positives on average by 12%.

Furthermore, we also demonstrate the generality of our inter-
active triaging approach by evaluating it on TaintBench (a well-
known taint analysis benchmark) on which we reduced false posi-
tives by 12%.

In summary, we make the following contributions:

https://doi.org/10.1145/3672608.3707956
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3672608.3707956

SAC ’25, March 31-April 4, 2025, Catania, Italy A. V. Padala et al.

1 public void onReceive(Context context, Intent intent) {
2 WifiManager wm = (WifiManager) context.getSystemService("wifi");
3 if (intent.getAction().equals("android.net.wifi.SCAN_RESULTS")) {
4 BAB.this.apList = �wm.getScanResults();
5 ...
6 List<String> result = new ArrayList<>();
7 for (int i = 0; i < BAB.this.apList.size(); i++) {
8 ScanResult scanResult = �(ScanResult) BAB.this.apList.get(i);
9 ...
10 result.add(scanResult.SSID); �
11 }
12
BAB.this.callWebInterface("setSsid", BAB.this.gson.toJson(result));
13 ...

Listing 1: A DtM vulnerability in REDACTED resulting in
Cross Site Scripting (XSS)

• We provide the first insight into DtM vulnerabilities and design
a static analysis technique to detect them.

• We design an interactive triaging technique of vulnerability alerts
that learns from user feedback and reduces false positives, i.e.,
12% (on average).

• We implemented RearFind encompassing our technique and
demonstrate its effectiveness by detecting 5 new (previously
unknown) DtM.

• We will make our implementation and dataset open-source1 to
enable future research on DtM vulnerabilities.
1

2 Background and Threat Model
IoT devices typically come with a Companion App (CApp), a mobile
app that lets users control the IoT device remotely. As shown in Fig-
ure 1, CApps communicate with the target IoT device through stan-
dard network protocols, specifically Ethernet or Bluetooth. Most
of the existing works [38], [10], [44] focus on testing IoT devices
through CApp. Specifically, they use or gather information from
CApp to test the target device. In this work, we invert that and test
the security of the CApp as the IoT devices are often a prime attack
vector.

As we mentioned in §1, there is a prevalence of security vulner-
abilities in IoT devices. Furthermore, the lack of exploit mitigation
techniques [45] makes it easy to exploit these vulnerabilities. In
this work, we focus on the impact of IoT devices on CApp and,
consequently, on the Smartphone. Specifically, we are interested in
detecting external device triggerable vulnerabilities (i.e., DtM) in the
companion app that runs on a Smartphone.

Threat model. The Figure 1 shows our threat model. We assume
that attackers have complete control of the software stack of IoT devices
(e.g., through code injection vulnerability). The attacker can make the
device send arbitrary data through network channels, e.g., TCP/IP
or Bluetooth. The attacker knows that the device is communicating
with a Smartphone through a CApp, and the attacker has access to
the CApp, i.e., can reverse engineer it. The goal of the attacker is to
gain complete control of the Smartphone through interactions (i.e.,
network messages) through CApp.

1github.com/rearfind/rearfindpublic

A
ttacker C

ontrolled
A

ttacker Target

Figure 1: Threatmodel of RearFind

Source

Identification
($ 3.1.1)

Sink

Instrumentation
($ 3.1.2)

Taint Analysis

($ 3.1.3)

Interactive
Triaging

($ 3.2)

or
Instrumented APK

Alerts

Companion
App

Taint Sources

Alerts Generation Triaging
Feedback

Ranked Alert

Figure 2: Overview of RearFind

3 Design
We plan to use static analysis, specifically taint tracking or data
flow tracking, to find DtM vulnerabilities. However, as mentioned
in §1, static taint tracking is prone to false positives. We handle this
by using an interactive triaging technique (§3.2), where we learn
false positive flows from developer interaction and provide alerts
that are more likely to be true positives. The Figure 2 shows the
overview of RearFind that has the following two phases.

3.1 Alerts Generation
In this phase, we aim to generate DtM vulnerability alerts. We
model DtM vulnerability identification as the problem of taint anal-
ysis, where the taint source (i.e., that produces untrusted/attacker-
controlled data) is an external device and important operations in
the companion app constitute sensitive sinks.

There are several existing tools that perform taint (or flow) track-
ing on Android apps. However, these tools need to be configured
with our sources and sinks.

3.1.1 Identifying Device Receive Functions (Taint Sources). It is well-
known [38, 44] that most companion apps communicate with the
target device through TCP/UDP or Bluetooth. Consequently, we
consider all the functions that can receive data through TCP/UDP
or Bluetooth as taint sources. An app can receive data through stan-
dard SDKmethods or native code via JNI (Java Native Interface)[34].
The Listing 2 shows examples of these two cases.
Finding Receiver Functions: We analyzed the entire Android
SDK and collected all methods that can receive data through above
protocols e.g., Ljava/net/URLConnection;.getInputStream and we found
82 methods that deal with receiving data, we call these leaf level

Detection of Device Triggerable Vulnerabilities in Android Companion Apps... SAC ’25, March 31-April 4, 2025, Catania, Italy

1 private InputStream handleServerResponse(HttpURLConnection connection)
2 throws IOException {
3 int $i0 = connection.getResponseCode();
4 if ($i0 == 200) {
5 InputStream $r2 = *𝑗 connection.getInputStream();
6 return $r2;
7 }
8 ...
9 }
10
11 public static int GetMotionDetectConfig
12 (
13 int i,
14 MotionDetectConfig motionDetectConfig
15) {
16 HashMap hashMap = new HashMap();
17 hashMap.put("cfgType", 1);
18 String jSONObject = new JSONObject(hashMap).toString();
19 Response response = new Response();
20 int sendCommand = *𝑛REDACTEDJni.sendCommand(i, 24033, jSONObject,

response, Priority.WARN_INT);↩→
21 Log.m21982b("", "GET_MOTION_DETECT_CONFIG:" + response.resp);
22 ...
23 JSONObject jSONObject2 = new JSONObject(response.resp*𝑛);
24 ...
25 }

Listing 2: Example illustrating two types of taint sources, i.e.,
Standard SDK methods (*𝑗) and JNI methods (*𝑛)

methods. Previous works [38, 44] show that APKs usually wrap the
receive functionality into application-specific wrapper functions,
which also take care of sanitization. Listing 2 shows an example
of such method handleServerResponse that returns an InputStream,
which we consider as tainted data since the data is from an TCP
source. We consider such application-specific wrapper functions
(that call these leaf-level functions) as taint sources.
Identifying JNI Sources: Apps can also receive data through JNI.
Chenxiong Qian et al. [11] showed that tracking data through JNIs
can help find info leaks through the shared objects. To handle this,
for each app, we perform a static call-graph analysis [8] of all native
libraries to identify all native methods (𝑓 𝑛) that can read from a
socket. We consider all JNI methods that can reach any function in
𝑓 𝑛 as taint sources.

3.1.2 Instrumenting Companion App with Sinks. For sinks, we con-
sider all operations that can affect the Smartphone (Category 1)
or the execution of the companion app (Category 2). We con-
sider all methods that affect the system resources (i.e., file system,
process control) as Category 1 sinks, e.g., java.net.URLConnection,
java.io.OutputStream.getOutputStream().

We identified a list of 235 methods by referring to prior works
[27] [16] [33].

For Category 2, we consider all sensitive operations in the app,
such as array indexing, division, etc. We also consider all variables
controlling loops as sensitive, as they can be used to cause denial of
service attacks. We instrument all sensitive operations by adding
a call to a dummy function (i.e., byteSinkClass.bytesinkMet(..)) and
passing the sensitive variable as an argument. Listing 3 shows an
example of this where the index used to access the array in line
12 is instrumented before the access, and the variables controlling
the loop exit in line 8 are also instrumented with respective calls to
their sink methods. This enables us to have a generic mechanism
to specify sinks, i.e., argument to a function.

1 private void modRequest(String cc, Context context) {
2 String[] $r3 = cc.split(";");
3 int i0 = 0;
4 while (true) {
5 int $i1 = $r3.length;
6 2 flashintSinkClass.intsinkMet(i0);
7 2 flashintSinkClass.intsinkMet($i1);
8 if (i0 >= $i1) { return; }
9 2 sinkClass.sinkMet(i0);
10 String cc2 = $r3[i0];
11 ...
12 sendSMS("79262000900", $r4.append($r1).toString());
13 i0++;
14 }
15 }

Listing 3: Example demonstrating taint sinks instrumenta-
tion(2)

3.1.3 Taint Analysis. We perform Static Taint Analysis [9] to track
the flow of tainted data, i.e., data produced by taint sources. We will
raise an alert when we detect tainted data flow to a sink. Several
tools [35] exist to perform taint analysis of Android apps. Instead of
re-designing a new tool, we want to use an existing best-performing
tool. However, Pauck et al. [35] showed that the effectiveness of
existing taint analysis (or flow tracking) tools varies across dif-
ferent types of apps, and no single tool is superior for all apps.
We enhanced the most robust tool, i.e., FlowDroid [16] with our
taint sources and various robustness fixes. This also enables us to
demonstrate the generality of our interactive triaging technique
(§3.2).

3.2 Interactive Triaging
This phase aims to prioritize alerts based on their likelihood of being
a true positive. We maintain a rank score for each alert, indicating
the likelihood of the alert being a true positive.

Overview. Initially (without any other information), all the alerts
will have the same rank score, i.e., equally likely to be true posi-
tives. We use an iterative system (right half of Figure 2), displaying
the alert to the user with the greatest rank score in each itera-
tion. In contrast, other non-iterative-based ranking systems (e.g.,
Z-Ranking [24]) display all alerts at once based on their score. The
user provides binary feedback, i.e., whether the alert is a true pos-
itive or not. If it is true positive (�) (or false positive (�)), then
the rank score of all other alerts will be increased, i.e., rewarded
(or decreased, i.e., penalized), based on how similar they are to the
current alert. In the next iteration, we again select an alert with
the highest rank score (which is now adjusted based on the user
feedback). This process continues for a fixed number of iterations
or until the developer desires.

3.2.1 Similarity Computation. There are various ways to compute
the similarity between two alerts. We want the similarity compu-
tation to be deterministic and interpretable, which makes it easy
to reason about our triaging technique. Consequently, we did not
explore any learning-based techniques, such as the one used in
Arbitrar [25], because of their non-determinism and the lack of
interpretability. Furthermore, these techniques require an effec-
tive vectorization mechanism, i.e., converting alert to a numerical
vector.

SAC ’25, March 31-April 4, 2025, Catania, Italy A. V. Padala et al.

a b c d eAlert 1

d f b a dAlert 2

g h d x yAlert 3

𝑆𝑖𝑚 = 2
5

𝑆𝑖𝑚 = 1
5

Figure 3: Alert Recalibration

A taint analysis alert is a sequence of instructions (i.e., DEX in-
structions) indicating the flow of tainted data from a taint source
(the first instruction) to a sensitive sink (the last instruction). A true
positive alert implies that the data flow is valid, and no sanitization
makes the flow safe. On the other hand, a false positive implies
either the data flow is invalid (e.g., imprecision in static analyses)
and/or there is a sanitization. The similarity between alerts should
measure how much of the flow is shared between alerts. We model
the computation of similarity as the longest subsequence matching
problem [5]. Specifically, we consider each instruction as an ele-
ment and model alert as a sequence of elements. We compute the
similarity score (i.e., Sim) between two alerts as the fraction of the
longest common subsequence (LCS) between them. The Figure 3
shows an example illustrating the similarity score computation of
Alert 2 and 3 w.r.t Alert 1. The length of LCS between Alert 2 and
1 is 2, with the length of the Alert 1 being 5. So the 𝑆𝑖𝑚 score of
Alert 2 is (2/5), similarly, for Alert 3.

3.2.2 Interactive Scoring. Given the user feedback for an alert 𝑎,
we adjust the score of all other alerts based on the above similarity
score. Specifically, if 𝑎 is true positive, we add the similarity score
to the rank score multiplied by a reward factor. If not (i.e., false
positive), we subtract the similarity score multiplied by a penalty
factor. The reward and penalty factors provide flexibility in handling
the confidence level of users providing different kinds of feedback.
The Listing 4 shows the pseudocode of our scoring algorithm. In
every iteration, we just display the alert with the highest score to
the user.

4 Implementation
We implemented RearFind for Android apps. Specifically, our

system works directly on APKs and does not require the app’s source
code. We implemented source identification and sink instrumenta-
tion on top of Soot [42] instrumentation framework. Since Java
and Kotlin applications are compiled into Dex bytecode. This al-
lows us to have a single analysis for both Java and Kotlin based
applications since Soot lifts the Dex bytecode to its own IR called
Jimple IR. Our call-graph analysis of native libraries (i.e., .so files) is
implemented using BinaryNinja [7]. We used FlowDroid as our
taint analysis framework as it is well-maintained and has reason-
able support for the latest versions of Android SDK. FlowDroid
also supports adding custom sources and sinks through a very
configurable format as shown in Listing 5.

1 def Recalibration(alerts, user_feedback):

2 reward_factor = 1.0

3 penalty_factor = 1.0

4 ranked_alerts = []

5

6 selected_alert = alerts[0]

7 if user_feedback == True: # True positive

8 selected_alert.rank_score += reward_factor

9 else: # False positive

10 selected_alert.rank_score -= penalty_factor

11

12 for alert in alerts:

13 Sim = compute_similarity(alert, selected_alert)

14 if user_feedback == True:

15 alert.rank_score += Sim * reward_factor

16 else:

17 alert.rank_score -= Sim * penalty_factor

18

19 ranked_alerts.append((alert, alert.rank_score))

20

21 sort(ranked_alerts)

22 return ranked_alerts

23

24 def compute_similarity(alert1, alert2):

25 lcs_length = len(lcs(alert1.trace, alert2.trace))

26 return lcs_length / len(alert1.trace)

Listing 4: Rank Score Recalibration based on user feedback.

1 <method signature="java.io.PrintWriter: void write(java.lang.String)">
2 <param index="0" description="Output Data">
3 <accessPath isSource="false" isSink="true" />
4 </param>
5 <additionalFlowCondition>
6 <signatureOnPath signature="java.net.URL:

java.net.URLConnection openConnection()" />↩→
7 </additionalFlowCondition>
8 </method>

Listing 5: Model used by FlowDroid to define a sinks

Table 1: Real World CApps

ID Name Classes Sources Instrumented
Sinks

R1 com.lgref.android.smartref.us.mp2012 1,697 43 3,439
R2 com.ipc360 9,466 83 33,332
R3 com.sjty.imotornew 2,957 26 6,145
R4 android.in.start 2,335 84 7,060
R5 cn.aviador.hybrid 13,013 69 53,953
R6 com.bergson 1,000 69 53,953
R7 com.evo.gimbal 5,289 28 18,435
R8 com.techwin.shc 5,372 39 18,811

Our interactive training is implemented as a standalone Python
script. In total, RearFind is implemented through 1.2K lines of Java
and 4K lines of Python.

5 Evaluation
We evaluate RearFind along with following aspects:

Q1 (Effectiveness of RearFind): How effective is RearFind in
finding DtM vulnerabilities in CApps?

Q2 (Effectiveness of Interactive Triaging): How effective is our
interactive triaging technique?

Detection of Device Triggerable Vulnerabilities in Android Companion Apps... SAC ’25, March 31-April 4, 2025, Catania, Italy

Table 2: TaintBench Dataset

ID Name Classes Sources Instrumented Sinks

T1 cajino_baidu 3,457 514 246
T2 proxy_samp 739 49 21
T3 smssend_packageInstaller 1,293 53 51
T4 death_ring_materialflow 869 101 80
T5 save_me 2,668 93 74
T6 stels_flashplayer_android-

_update
1,115 42 38

T7 sms_send_locker_qqmagic 783 20 14
T8 fakedaum 1,280 97 83
T9 roidsec 785 40 22
T10 hummingbad_android_samp 5,717 461 369
T11 backflash 1,402 53 35
T12 chat_hook 1,155 22 21
T13 overlaylocker2_android_samp 1,754 60 48
T14 vibleaker_android_samp 5,410 428 246
T15 tetus 920 45 43
T16 fakeplay 1,550 43 34
T17 fakebank_android_samp 1,207 59 44
T18 threatjapan_uracto 1,213 16 14
T19 overlay_android_samp 1,054 55 35
T20 phospy 853 43 37
T21 jollyserv 1,681 200 159
T22 dsencrypt_samp 587 18 9
T23 exprespam 686 4 6
T24 xbot_android_samp 914 220 100
T25 scipiex 1,268 295 125
T26 smsstealer_kysn_assassincreed-

_android_samp
1,523 33 18

Table 3: New Bugs discovered in CApps.

ID Bug Class Num. Bugs Ablation

R4 SQL Injectection 1 1
R5 Plaintext Credentials 2 2
R2 Hardcoded AES Keys 1 1
R6 Unchecked FW for DFU 1 1

Table 4: Comparison and Ablation Study.é indicates that the
corresponding bug was not detected by the technique.

ID FlowDroid C1 RearFind

Alerts TP Alerts TP
Default
Rank Alerts TP

Interactive
Rank

R1 290 76 106
R2 794 é 394 1 28 567 1 8
R3 133 73 91
R4 273 é 497 1 190 940 1 14
R5 140 é 80 1 8 93 1 1
R6 159 é 74 1 2, é 157 2 1,2
R7 39 35 53
R8 121 90 250

Q3 (Comparative Study): What is the effectiveness of RearFind
in comparison with other state-of-the-art techniques?

Q4 (Ablation Study): What is the contribution of individual
phases on the overall effectiveness of RearFind?

5.1 Dataset
Our dataset is composed of real-world CApps and ground truth
Android apps with known true positives (to evaluate our inter-
active triaging). We selected 8 real-world CApps (Table 1). Our
selection is guided by how representative is the CApp and whether
our underlying framework (i.e., FlowDroid) is able to handle them.

Figure 4: Rank trend of RearFind.

We selected TaintBench[27] (5) as our ground truth dataset as it
contains realistic apps, with each app containing multiple issues.
Furthermore, TaintBench also provides ground truth information
in a machine-readable format (i.e., JSON), making it easy for eval-
uation. We ignored other simplistic ground truth datasets, such
as DroidBench[13] and Ghera[32], as they contain either simple
(unrealistic) apps or apps with single vulnerability per app. Table 1
and Table 2 show the details for the datasets we are using.

5.2 Experimental Setup
RearFind was run on an Ubuntu 22.04 LTS machine with AMD
EPYC 7543P (64 cores) and 128 GB memory with 64 GB reserved
for the analysis. We allow the taint analysis frameworks to run for
a maximum of 15 minutes and the JNI analysis to run for 5 mins
per shared object. We used Soot 4.4.1, Flowdroid 2.13.0 which were
the latest version at the time of running the analysis.

5.2.1 Default Ranking. We use a default severity ranking scheme
for all taint analysis alerts. Our ranking is based on the severity
of sources, sinks, and the likelihood of flows present in the alert
being false positives. Listing 6 shows the pseudocode of our ranking
technique. The scores for the sources and sinks are assigned based
on their severity. For instance, a network source will be assigned
a higher score than a non-network score. Similarly, a command
execution sink (e.g., exec) will be assigned a higher score than the
file open. We assign scores for flows based on the likelihood of it
being a false positive. Consider the example in Listing 2. At line 16,
we convert response.resp to an java.lang.Integer . Such conversions
in Java are most likely safe, and considering them, they might result
in false positives. Hence, we assign such type conversions (i.e., from
object types to scalar) a lower score. On the other hand, conversions
to other object types (e.g.,byte[]) will have a higher score. Without
our interactive triaging, we will display alerts in the descending
order of the score computed above.

5.2.2 Interaction Budget for Interactive Triaging. We chose an in-
teraction budget of 15 rounds for the TaintBench dataset and
20 rounds for the real-world CApps. This is in line with previous
studies [25]. We triaged a total of 246 alerts across 26 APKs in
TaintBench and 160 alerts across 8 CApps.

SAC ’25, March 31-April 4, 2025, Catania, Italy A. V. Padala et al.

1 def severity_score(issues):
2 for each issue in issues:
3 score = 0
4 score += get_source_score(source)
5 score += get_sink_score(sink)
6 score += calculate_trace_score(feature)
7 issue.score = normalize(score)
8 normalize_scores(issues)
9 return sort_issues_by_score(issues)

Listing 6: Severity Scoring Algorithm

T1 T2 T3 T5 T6 T7 T8 T9 T1
1

T1
4

T1
6

T1
8

T2
3

T2
5

T2
6

0

5

10

N
ew

Bu
gs

Figure 5: New Bugs found in the TaintBench

5.3 Q1: Effectiveness of RearFind

Alerts Generation. The columns sinks and sources of Table 2 and
1 show the number of taint sources (java/native) and sinks found
in each app. We randomly sampled 10 apps and verified that all
these are valid. This demonstrates the importance of our sources
and sinks identification techniques (§3.1.1 and 3.1.2).

Bug Finding Ability. We used RearFind with its interactive
triaging on both datasets.
On TaintBench: Given our interaction budget of 15 interactions,
the maximum number of bugs that can be detected in each APK is
15, and consequently, the total number of detectable bugs is 135.

Table 5 shows the summary of results across all APKs. RearFind
through its interactive triaging, found a total of 128 bugs in Taint-
Bench. Out of which, 97 are known bugs, i.e., RearFind was able
to find 71% of detectable bugs in TaintBench demonstrating the
effectiveness of RearFind in identifying previously known bugs.

Interestingly, we found 31 new bugs in TaintBench, i.e., bugs that
are not listed in the ground truth. Figure 5 shows the distribution
of these bugs across various APKs. These results demonstrate the
effectiveness of RearFind as a general bug-finding tool for Android
APKs.
On Real World Dataset:We found a total of 5 security vulnerabil-
ities in Real-world CApps. Table 3 shows the split of vulnerabilities
and their categories across different APKs. Listing 7 shows a real
SQL injection found in android.in.start (R4) CApp. As we can
see, the user input (indicated by �) is used (path highlighted through
�) in an SQL query (indicated by
) without any sanitization re-
sulting in a SQL injection vulnerability.

Responsible Disclosure. We are in the process of disclosing these
vulnerabilities to the respective vendors.

1 public void syncUserData(CommCloud commCloud) {
2 String str;
3 DataBaseOperator dataBaseOperator;
4 boolean z;
5 ...
6 dataBaseOperator2.updateData(DataBaseOperator.TABLE_TB_USERINFO,

"iHealthCloud = '" + �this.etxt_userName.getText().toString() +
"'", "isRememberPassword = '" + (this.cb_rememberPwd.isChecked() ?
"T" : "F") + "' , isAutoLogin='F' , isDisplayWelcome='" + str2 +
"'");

↩→
↩→
↩→
↩→

7 ...
8 }
9 }
10 public Boolean updateData(String str, String str2 �, String str3) {
11 String str4 = str3.length() > 0 ? "UPDATE " + str + " SET " + str3 + "

where " + � str2 + ";" : "UPDATE " + str + " SET " + str3;↩→
12 this.myDataBase = getWritableDatabase();
13 try {
14
 this.myDataBase.execSQL(str4);
15 return true;
16 } catch (SQLException e) {
17 return false;
18 } finally {
19 this.myDataBase.close();
20 }
21 }

Listing 7: SQL Injection in R4

Table 5: TaintBench Results.

APK Ground Truth Alerts Observed Ablation

T1 12 168 9 0
T2 17 41 10 5
T3 5 79 13 4
T4 1 29 1 0
T5 25 31 12 5
T6 3 63 12 0
T7 6 8 1 0
T8 2 13 1 0
T9 6 30 11 0
T10 2 13 0 0
T11 13 57 14 2
T12 12 17 9 2
T13 7 14 1 1
T14 4 46 3 1
T15 2 1 0 0
T16 2 46 4 2
T17 5 7 4 0
T18 2 3 3 0
T19 4 2 1 0
T20 2 2 2 0
T21 1 1 1 0
T22 1 3 0 0
T23 2 5 5 0
T24 3 1 0 0
T25 3 7 4 0
T26 5 5 5 2
Total 147 692 128 25

5.4 Q2: Effectiveness of Interactive Triaging
The Figure 7 shows the performance of our interactive triaging on
each APK of TaintBench dataset. As we can see, our technique
learns from user feedback and picks true positives with higher
probability. This can be observed graphically (in Figure 7) as there
are more green squares (i.e., true positives) when we move from left
to right. The Figure 4 also illustrates this, where more feedback (i.e.,
as we go right) results in higher rank score for true positives (i.e.,
blue dots). This demonstrates our interactive triaging technique’s
effectiveness and ability to learn from user feedback.

We further evaluate the effectiveness of our interactive triaging
along the following three aspects.

Detection of Device Triggerable Vulnerabilities in Android Companion Apps... SAC ’25, March 31-April 4, 2025, Catania, Italy

T2 T3 T5 T1
1

T1
2

T1
3

T1
4

T1
6

T2
2

T2
6

0

0.2

0.4

APK

G
ai
n

Figure 6: Gain (§5.4.3) for each APK of TaintBench

5.4.1 Ablation. Given a triaging budget 𝑡 , we compute the number
of additional true bugs detected using our interactive triaging com-
pared to the default method (i.e., default scoring). Specifically, we
interact with RearFind for 𝑡 alerts and use the top-ranked 𝑡 alerts
for the default method. As mentioned in §5.2.2, we use a budget
of 𝑡 = 15 for TaintBench and 𝑡 = 20 for real-world CApps. The
column Ablation of Table 5 and 3 shows the results for TaintBench
and real-world CApps, respectively. In total, our interactive triag-
ing enabled us to find an additional 24% bugs in TaintBench. The
results are much more impressive in real-world CApps (Table 3),
where the default method has found none of the vulnerabilities
found by our interactive triaging.

5.4.2 False positive Rate. This is a side effect of ablation, where we
compute the number of false positives in our interactive triaging
v/s default method. On TaintBench dataset, the default ranking
has a false positive rate of 62%, whereas our interactive scoring has
50% with a 12% reduction. On real-world CApps, over 20 triages
per app for the 4 apps we found bugs in, the default ranking has
a false positive rate of 97.5%, whereas our interactive scoring has
93.75% with a 4% reduction. This shows that our interactive triaging
is effective at false positive reduction.

5.4.3 Triaging Gain. We define this as the amount of information
gained by our technique for detecting true positives. We define gain
as:

Gain =
No. of New Issues Found using Interactive Triage

Last True Positive Iteration

The gain is defined only for cases where our technique found at
least one true positive.A higher value indicates better gain (desirable).
The ideal value for this metric is 1, where we found a true positive
in every iteration, e.g., we found three true positives and the last
true positive was found in the 3rd iteration. This indicates that our
technique gained a lot of information in every iteration. The worst
case is 1/15 (i.e., 0.06), where we detected one true positive, and it
was in the last iteration. Specifically, our technique did not learn
fast enough, and it required 14 iterations. The Figure 6 shows the
gain for various APKs of TaintBench dataset. The gain for most
of the APKs is higher than 0.3, indicating that our technique can
effectively gain from user interactions.

Figure 7: User Feedback andPerformance of Interactive Triag-
ing for TaintBench

5.5 Q3: Comparative Study
We compared with FlowDroid, the state-of-the-art taint tracking
framework for Android APKs. We used FlowDroid with its default
configuration (i.e., default sources and no sink instrumentation).

On TaintBench, FlowDroid found 71% bugs (among the top
15 alerts) compared to 94% bugs by RearFind.

On real-world CApps, FlowDroid found none of the bugs found
by RearFind. Table 4 shows the results for each APK. Despite a
large number of warnings, FlowDroid found none of the bugs
(100% false positive rate).

5.6 Q4: Ablation Study
In this section, we perform an ablation study to evaluate the contri-
bution of our techniques to the overall effectiveness of RearFind.
Specifically, our taint source identification’s contribution to the
overall effectiveness of RearFind. We created a new configuration
C1 of RearFind with only taint source information (§3.1.1), no
taint sink instrumentation, and no interactive triaging. The Table 4
shows the results. First, we can see that C1 failed to find one of the
bugs in 𝑅6. Second, the default ranking (indicated under Default
Rank column) of the alerts corresponding to these bugs is very
large, indicating that the developer has to go through various alerts

SAC ’25, March 31-April 4, 2025, Catania, Italy A. V. Padala et al.

to find the true bug. Finally, our interactive triaging found bugs
in a considerably smaller number of iterations, as indicated by the
Interactive Rank column.

6 Limitations and Future Work
We acknowledge the following limitations of the current state of
RearFind.

• Lack of a comprehensive DtM Ground Truth: Even though
TaintBench has enough APKs and general taint-related vulner-
abilities, there is no dataset specifically for DtM vulnerabilities.
Furthermore, TaintBench ground truth is on decompiled Java
code and not on the dex instruction level — on which our taint
alerts are generated. It required significant effort to map the Java-
level information to dex instructions. We believe our findings
will serve as the initial dataset of DtM vulnerabilities.

• Tool Limitations: We adopt and build on top of existing frame-
works, which implies that we also adopt the limitations of the
frameworks, so wherever the framework fails, RearFind also
fails. This was pretty evident for the instrumentation engine
where Soot failed 50% of the time.

• Smaller Real World Dataset: The real world dataset is not very
exhaustive. This has to do with the failure rate of the tools, which
limits how many APKs move from Taint Source Identification
3.1.1 to Sink Instrumentation 3.1.2.

• Fine-grained Instrumentation: Finer instrumentation rules
would be able to reduce the false positives by a huge margin
and catch new bug classes too. Although this requires manual
effort to define the instrumentation constraints, we should see
a relatively lower number of alerts and possibly more quality
alerts.

7 Related Work
There are many tools [35] that try to perform static taint analy-
sis on Android apps, such as FlowDroid [16], AmanDroid [43],
MarianaTrench [30], and DroidSafe [19]. There are techniques
built on top of these tools for specific purposes, e.g., to find loop
bounds [17], malware detection [40], etc. In our work, we cus-
tomized FlowDroid to detect DtM vulnerabilities.

Security Analysis of Companion Apps. Several works try to
study companion apps. Scoccia et al. [41] analyzed user perception
of companion apps. Allen et al. [2] uses existing Static application
security testing (SAST) tools to find vulnerabilities in companion
apps. However, it focuses on regular app-level vulnerabilities and
does not consider DtM vulnerabilities.

Almost all existing works that analyze companion apps focus on
vulnerability detection on the corresponding IoT device. Mauro Ju-
nior et al. [31] uses dynamic analysis of companion apps to find
insecure crypto on IoT devices. Diane [38] uses a combination of
static and dynamic analysis to identify Fuzzing Triggers, i.e., func-
tions that send data to the target IoT device. These triggers are then
used to fuzz-test the device. Similarly, IoTFuzzer [10] also tries to
test the target device through the companion app. IoTProfiler [33]
analyzes companion apps through learning techniques to identify

leakage of sensitive data. In this work, we focus on DtM vulnera-
bilities in companion apps, i.e., those that can be triggered through
IoT devices.

Ranking Static Analysis Alerts. Techniques to rank static anal-
ysis alerts can be categorized into two categories as (i) Ad-Hoc
Filtering, and (ii) Statistical Filtering.

Ad-Hoc filtering techniques use custom rules for ranking. AWARE[21]
uses alert type and code locality to rank alerts. This technique as-
sumes that alerts closer to each other are expected to have a similar
outcome and are similarly actionable.

Statistical Filtering techniques uses various statistical and prob-
abilistic methods for ranking. Z-Ranking [24] is one of the first
works that tries to rank alerts from most to least probable based
frequency counts of successful and failed alerts reported by the
static analysis tool. This is a drawback of Z-Ranking, where the
system expects the static analysis tool to give successful and failed
checks for ranking.

Similarly, FeedBackRank [23], Bing [36] and Bayesmith [22] pro-
posed a Bayesian network [6] based ranking, which also adapts
based on user feedback. However, these techniques work well for
query-based static analysis techniques, e.g., Datalog [14], and can-
not be easily applied to flow-based analysis techniques.

FITS [26] performs filtering at the intermediate taint source
finding phase. Consequently, the technique modifies the underlying
analysis and cannot be applied to arbitrary taint results. However,
RearFind performs filtering at the end, making it independent of
the underlying analysis and thus can be applied to arbitrary taint
results. We also demonstrate the generalizability of RearFind in
§5.

8 Conclusion
In this paper we introduce a systematic way to automatically find
and generate taint sources that help in better Taint Analysis of
IoT Companion Apps. We also introduced an Interactive Triaging
system to aid in faster triage so less user effort is spent on analysing
False Positives. Our approach performs good in the ground truth
by finding 21% new bugs that are not present in the ground truth.

9 Acknowledgements
This research was supported by the National Science Foundation
(NSF) under Grant CNS-2340548. Any opinions, findings, conclu-
sions, or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the NSF.

References
[1] Mohammed Ali Al-Garadi, Amr Mohamed, Abdulla Khalid Al-Ali, Xiaojiang Du,

Ihsan Ali, and Mohsen Guizani. 2020. A Survey of Machine and Deep Learning
Methods for Internet of Things (IoT) Security. IEEE Communications Surveys &
Tutorials 22, 3 (2020), 1646–1685. https://doi.org/10.1109/COMST.2020.2988293
Conference Name: IEEE Communications Surveys & Tutorials.

[2] Ashley Allen, Alexios Mylonas, Stilianos Vidalis, and Dimitris Gritzalis. 2024.
Security Evaluation of Companion Android Applications in IoT: The Case of
Smart Security Devices. Sensors 24, 17 (2024). https://doi.org/10.3390/s24175465

[3] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019.
SoK: Security Evaluation of Home-Based IoT Deployments. Proceedings -
IEEE Symposium on Security and Privacy 2019-May (2019), 1362–1380. https:
//doi.org/10.1109/SP.2019.00013

[4] Amnesia 2020. AMNESIA:33 – Foresout Research Labs Finds 33 New Vulnerabil-
ities in Open Source TCP/IP Stacks. https://www.forescout.com/blog/amnesia33-

https://doi.org/10.1109/COMST.2020.2988293
https://doi.org/10.3390/s24175465
https://doi.org/10.1109/SP.2019.00013
https://doi.org/10.1109/SP.2019.00013
https://www.forescout.com/blog/amnesia33-forescout-research-labs-finds-33-new-vulnerabilities-in-open-source-tcp-ip-stacks/
https://www.forescout.com/blog/amnesia33-forescout-research-labs-finds-33-new-vulnerabilities-in-open-source-tcp-ip-stacks/
https://www.forescout.com/blog/amnesia33-forescout-research-labs-finds-33-new-vulnerabilities-in-open-source-tcp-ip-stacks/

Detection of Device Triggerable Vulnerabilities in Android Companion Apps... SAC ’25, March 31-April 4, 2025, Catania, Italy

forescout-research-labs-finds-33-new-vulnerabilities-in-open-source-tcp-ip-
stacks/. (Dec. 2020).

[5] Alberto Apostolico and Concettina Guerra. 1987. The longest common subse-
quence problem revisited. Algorithmica 2 (1987), 315–336.

[6] Bayesian network 2024. Bayesian network - Wikipedia. https://en.wikipedia.org/
wiki/Bayesian_network. (2024). (Accessed on 10/02/2024).

[7] Binary Ninja 2024. Binary Ninja. https://binary.ninja/. (2024). (Accessed on
10/04/2024).

[8] bncallgraph. 2024. psifertex/callgraph: Binary Ninja Call Graph plugin. https:
//github.com/psifertex/callgraph. (2024). (Accessed on 10/02/2024).

[9] Dan Boxler and Kristen R Walcott. 2018. Static taint analysis tools to detect
information flows. In Proceedings of the International Conference on Software
Engineering Research and Practice (SERP). The Steering Committee of The World
Congress in Computer Science, Computer . . . , 46–52.

[10] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin,
XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Kehuan
Zhang. IoTFuzzer: Discovering Memory Corruptions in IoT Through App-based
Fuzzing. In Proceedings 2018 Network and Distributed System Security Symposium
(2018). Internet Society. https://doi.org/10.14722/ndss.2018.23159

[11] Chenxiong Qian, Chenxiong Qian, Liu Wang, Xiapu Luo, Yuru Shao, Yuru Shao,
Alvin T. S. Chan, and Alvin T. S. Chan. 2014. On Tracking Information Flows
through JNI in Android Applications. (June 2014), 180–191. https://doi.org/10.
1109/dsn.2014.30

[12] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Au-
tomated test input generation for android: Are we there yet?(e). In 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 429–440.

[13] Steven Arzt Christian Fritz and Siegfried Rasthofer. 2024. secure-software-
engineering/DroidBench: A micro-benchmark suite to assess the stability of taint-
analysis tools for Android. https://github.com/secure-software-engineering/
DroidBench. (2024). (Accessed on 09/17/2024).

[14] Datalog. 2024. Datalog -Wikipedia. https://en.wikipedia.org/wiki/Datalog. (2024).
(Accessed on 10/02/2024).

[15] Tamara Denning, Alan Borning, Batya Friedman, Brian T. Gill, Tadayoshi Kohno,
and William H. Maisel. 2010. Patients, pacemakers, and implantable defibril-
lators: human values and security for wireless implantable medical devices. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’10). Association for Computing Machinery, New York, NY, USA, 917–926.
https://doi.org/10.1145/1753326.1753462

[16] Flowdroid. 2024. secure-software-engineering/FlowDroid: FlowDroid Static
Data Flow Tracker. https://github.com/secure-software-engineering/FlowDroid.
(2024). (Accessed on 09/16/2024).

[17] Yanick Fratantonio, Aravind Machiry, Antonio Bianchi, Christopher Kruegel, and
Giovanni Vigna. 2015. CLAPP: characterizing loops in Android applications. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE 2015). Association for Computing Machinery, New York, NY, USA,
687–697. https://doi.org/10.1145/2786805.2786873

[18] Frida. 2024. Frida • A world-class dynamic instrumentation toolkit | Observe and
reprogram running programs on Windows, macOS, GNU/Linux, iOS, watchOS,
tvOS, Android, FreeBSD, and QNX. https://frida.re/. (2024). (Accessed on
09/16/2024).

[19] Michael I. Gordon, Deokhwan Kim, Jeff Perkins, Limei Gilham, Nguyen Nguyen,
and Martin Rinard. 2015. Information-Flow Analysis of Android Applications in
DroidSafe. In Proceedings 2015 Network and Distributed System Security Sympo-
sium. Internet Society, San Diego, CA. https://doi.org/10.14722/ndss.2015.23089

[20] Mary W Hall and Ken Kennedy. 1992. Efficient call graph analysis. ACM Letters
on Programming Languages and Systems (LOPLAS) 1, 3 (1992), 227–242.

[21] Sarah Heckman and Laurie Williams. 2008. On Establishing a Benchmark for
Evaluating Static Analysis Alert Prioritization and Classification Techniques.
In Proceedings of the Second ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement. ACM, Kaiserslautern Germany, 41–50.
https://doi.org/10.1145/1414004.1414013

[22] Hyunsu Kim, Mukund Raghothaman, and Kihong Heo. 2022. Learning proba-
bilistic models for static analysis alarms. In Proceedings of the 44th International
Conference on Software Engineering (ICSE ’22). Association for Computing Ma-
chinery, New York, NY, USA, 1282–1293. https://doi.org/10.1145/3510003.3510098

[23] Ted Kremenek, KenAshcraft, Junfeng Yang, andDawson Engler. 2004. Correlation
exploitation in error ranking. SIGSOFT Softw. Eng. Notes 29, 6 (Oct. 2004), 83–93.
https://doi.org/10.1145/1041685.1029909

[24] Ted Kremenek and Dawson Engler. 2003. Z-ranking: using statistical analysis
to counter the impact of static analysis approximations. In Proceedings of the
10th International Conference on Static Analysis (SAS’03). Springer-Verlag, Berlin,
Heidelberg, 295–315.

[25] Ziyang Li, Aravind Machiry, Binghong Chen, Mayur Naik, Ke Wang, and Le
Song. 2021. Arbitrar: User-guided api misuse detection. In 2021 IEEE Symposium
on Security and Privacy (SP). IEEE, 1400–1415.

[26] Puzhuo Liu, Yaowen Zheng, Chengnian Sun, Chuan Qin, Dongliang Fang, Ming-
dong Liu, and Limin Sun. 2024. FITS: Inferring Intermediate Taint Sources for

Effective Vulnerability Analysis of IoT Device Firmware. In Proceedings of the
28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 4 (ASPLOS ’23). Association for Com-
puting Machinery, New York, NY, USA, 138–152. https://doi.org/10.1145/3623278.
3624759

[27] Linghui Luo, Felix Pauck, Goran Piskachev, Manuel Benz, Ivan Pashchenko,
Martin Mory, Eric Bodden, Ben Hermann, and Fabio Massacci. TaintBench: Auto-
matic Real-World Malware Benchmarking of Android Taint Analyses. Empirical
Software Engineering 27, 1 (????), 16. https://doi.org/10.1007/s10664-021-10013-5

[28] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: an input
generation system for Android apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE 2013). Association for Comput-
ing Machinery, New York, NY, USA, 224–234. https://doi.org/10.1145/2491411.
2491450

[29] Valentin JM Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J Schwartz, and Maverick Woo. 2019. The art, science, and engi-
neering of fuzzing: A survey. IEEE Transactions on Software Engineering 47, 11
(2019), 2312–2331.

[30] Mariana Trench 2024. facebook/mariana-trench: A security focused static analysis
tool for Android and Java applications. https://github.com/facebook/mariana-
trench. (2024). (Accessed on 09/16/2024).

[31] Davino Mauro Junior, Luis Melo, Hao Lu, Marcelo d’Amorim, and Atul Prakash.
2019. A Study of Vulnerability Analysis of Popular Smart Devices Through Their
Companion Apps. In 2019 IEEE Security and Privacy Workshops (SPW). 181–186.
https://doi.org/10.1109/SPW.2019.00042

[32] Joydeep Mitra and Venkatesh-Prasad Ranganath. 2017. Ghera: A Repository
of Android App Vulnerability Benchmarks. In Proceedings of the 13th Interna-
tional Conference on Predictive Models and Data Analytics in Software Engineering
(PROMISE). Association for Computing Machinery, New York, NY, USA, 43–52.
https://doi.org/10.1145/3127005.3127010

[33] Yuhong Nan, Xueqiang Wang, Luyi Xing, Xiaojing Liao, Ruoyu Wu, Jianliang
Wu, Yifan Zhang, and XiaoFeng Wang. 2023. Are You Spying on Me? Large-
Scale Analysis on IoT Data Exposure through Companion Apps. In 32nd USENIX
Security Symposium. USENIX Association, Anaheim, CA, 6665–6682. https://
www.usenix.org/conference/usenixsecurity23/presentation/nan

[34] Oracle. 2024. Introduction. https://docs.oracle.com/javase/7/docs/technotes/
guides/jni/spec/intro.html. (2024). (Accessed on 09/16/2024).

[35] Felix Pauck, Eric Bodden, and Heike Wehrheim. 2018. Do Android Taint Analysis
Tools Keep Their Promises?. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. ACM, Lake Buena Vista FL USA, 331–341. https://doi.
org/10.1145/3236024.3236029

[36] Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. 2018.
User-guided program reasoning using Bayesian inference. In Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI 2018). Association for Computing Machinery, New York, NY, USA,
722–735. https://doi.org/10.1145/3192366.3192417

[37] Heena Rawal and Chandresh Parekh. 2017. Android Internal Analysis of APK by
Droid_Safe & APK Tool. International Journal of Advanced Research in Computer
Science 8, 5 (2017).

[38] Nilo Redini, Andrea Continella, Dipanjan Das, Giulio De Pasquale, Noah Spahn,
Aravind Machiry, Antonio Bianchi, Christopher Kruegel, and Giovanni Vigna.
2021. Diane: Identifying Fuzzing Triggers in Apps to Generate Under-constrained
Inputs for IoT Devices. In 2021 IEEE Symposium on Security and Privacy (SP). 484–
500. https://doi.org/10.1109/SP40001.2021.00066

[39] Ripple20 2024. Ripple20. https://www.jsof-tech.com/disclosures/ripple20/.
(2024).

[40] Suzanna Schmeelk, Junfeng Yang, and Alfred Aho. 2015. Android Malware Static
Analysis Techniques. In Proceedings of the 10th Annual Cyber and Information
Security Research Conference (CISR ’15). Association for Computing Machinery,
New York, NY, USA, Article 5, 8 pages. https://doi.org/10.1145/2746266.2746271

[41] Gian Luca Scoccia, Romina Eramo, and Marco Autili. 2023. Studying users’
perception of IoT mobile companion apps. Pervasive and Mobile Computing 92
(2023), 101786. https://doi.org/10.1016/j.pmcj.2023.101786

[42] Soot. 2024. soot-oss/soot: Soot - A Java optimization framework. https://github.
com/soot-oss/soot. (2024). (Accessed on 10/02/2024).

[43] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2018. Amandroid: A
Precise and General Inter-component Data FlowAnalysis Framework for Security
Vetting of Android Apps. ACM Trans. Priv. Secur. 21, 3 (April 2018), 14:1–14:32.
https://doi.org/10.1145/3183575

[44] Yuhao Wu, Jinwen Wang, Yujie Wang, Shixuan Zhai, Zihan Li, Yi He, Kun Sun,
Qi Li, and Ning Zhang. 2024. Your Firmware Has Arrived: A Study of Firmware
Update Vulnerabilities. In 33rd USENIX Security Symposium (USENIX Security
24). USENIX Association, Philadelphia, PA, 5627–5644. https://www.usenix.org/
conference/usenixsecurity24/presentation/wu-yuhao

[45] Miao Yu, Jianwei Zhuge, Ming Cao, Zhiwei Shi, and Lin Jiang. 2020. A survey
of security vulnerability analysis, discovery, detection, and mitigation on IoT
devices. Future Internet 12, 2 (2020), 27.

https://www.forescout.com/blog/amnesia33-forescout-research-labs-finds-33-new-vulnerabilities-in-open-source-tcp-ip-stacks/
https://www.forescout.com/blog/amnesia33-forescout-research-labs-finds-33-new-vulnerabilities-in-open-source-tcp-ip-stacks/
https://www.forescout.com/blog/amnesia33-forescout-research-labs-finds-33-new-vulnerabilities-in-open-source-tcp-ip-stacks/
https://en.wikipedia.org/wiki/Bayesian_network
https://en.wikipedia.org/wiki/Bayesian_network
https://binary.ninja/
https://github.com/psifertex/callgraph
https://github.com/psifertex/callgraph
https://doi.org/10.14722/ndss.2018.23159
https://doi.org/10.1109/dsn.2014.30
https://doi.org/10.1109/dsn.2014.30
https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://en.wikipedia.org/wiki/Datalog
https://doi.org/10.1145/1753326.1753462
https://github.com/secure-software-engineering/FlowDroid
https://doi.org/10.1145/2786805.2786873
https://frida.re/
https://doi.org/10.14722/ndss.2015.23089
https://doi.org/10.1145/1414004.1414013
https://doi.org/10.1145/3510003.3510098
https://doi.org/10.1145/1041685.1029909
https://doi.org/10.1145/3623278.3624759
https://doi.org/10.1145/3623278.3624759
https://doi.org/10.1007/s10664-021-10013-5
https://doi.org/10.1145/2491411.2491450
https://doi.org/10.1145/2491411.2491450
https://github.com/facebook/mariana-trench
https://github.com/facebook/mariana-trench
https://doi.org/10.1109/SPW.2019.00042
https://doi.org/10.1145/3127005.3127010
https://www.usenix.org/conference/usenixsecurity23/presentation/nan
https://www.usenix.org/conference/usenixsecurity23/presentation/nan
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/intro.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/intro.html
https://doi.org/10.1145/3236024.3236029
https://doi.org/10.1145/3236024.3236029
https://doi.org/10.1145/3192366.3192417
https://doi.org/10.1109/SP40001.2021.00066
https://www.jsof-tech.com/disclosures/ripple20/
https://doi.org/10.1145/2746266.2746271
https://doi.org/10.1016/j.pmcj.2023.101786
https://github.com/soot-oss/soot
https://github.com/soot-oss/soot
https://doi.org/10.1145/3183575
https://www.usenix.org/conference/usenixsecurity24/presentation/wu-yuhao
https://www.usenix.org/conference/usenixsecurity24/presentation/wu-yuhao

	Abstract
	1 Introduction
	2 Background and Threat Model
	3 Design
	3.1 Alerts Generation
	3.2 Interactive Triaging

	4 Implementation
	5 Evaluation
	5.1 Dataset
	5.2 Experimental Setup
	5.3 Q1: Effectiveness of RearFind
	5.4 Q2: Effectiveness of Interactive Triaging
	5.5 Q3: Comparative Study
	5.6 Q4: Ablation Study

	6 Limitations and Future Work
	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References

