
TYPEFLEXER: Type Directed Flexible Program
Partitioning

Arunkumar Bhattar ∗, Liyi Li †, Mingwei Zhu ‡, Le Chang ‡, and Aravind Machiry∗
∗Purdue University

†Iowa State University
‡University of Maryland, College Park

Abstract—Program partitioning is a proven technique for
isolating potentially vulnerable code from trusted program
components. We argue that an extreme isolation mechanism is
not needed for all use cases. However, existing approaches tightly
couple the security policy (what to partition) with the isolation
mechanism (how to partition) making them inflexible. We propose
TYPEFLEXER, which cleanly separates these concerns through
a type-directed design. Our novel type system uses tainted
annotations to mark entities that must be isolated, ensuring that
tainted components do not interfere with untainted ones. To
facilitate this process, we introduce TYPEMATIC, an automated
annotation tool that not only propagates taint information
according to our type rules but also identifies critical taint
explosion points, allowing developers to apply explicit sanitizations
where needed. We demonstrate the flexibility of our approach by
designing three distinct isolation mechanisms, each with unique
security guarantees and performance trade-offs. Our evaluation
shows that TYPEFLEXER effectively contains vulnerabilities with
negligible overhead as compared to the 12.8% performance
penalty seen in existing state-of-the-art program partitioning
techniques.

Index Terms—Program Partitioning, Type Checking, Dynamic
Checking, Language Based Security.

I. INTRODUCTION

Vulnerabilities due to memory corruption in C programs
remain widespread [1], [2], [3], despite many countermea-
sures [4]. Program partitioning has long been explored for
security: it separates potentially vulnerable components from
the rest [5], [6], [7], [8], [9]. However, these techniques often
impose heavy overhead by combining partitioning with strict
Software Fault Isolation (SFI) [10]. Specifically, in addition
to partitioning, existing techniques also provide SFI such
that code in the untrusted region cannot affect code in the
trusted region, e.g., by executing untrusted partition in a
separate process [9] or executing in a Trusted Execution
environment [8]. However, this extreme partitioning is not
always necessary for certain functions and also infeasible
in certain resource-constrained environments. For instance,
consider a string processing function that scans for a pattern.
Having a complete SFI for such a function adds a lot of
overhead and may not be necessary. Ideally, we want to isolate
this only against spatial safety violations (e.g., buffer overread),
as the function cannot contain other issues (e.g., use-after-free).
But existing partitioning techniques do not allow this as they
are specialized for a specific SFI technique (Section II).

In other words, existing techniques combine policy (i.e., what
to partition) with mechanism (i.e., how to partition). We argue
that existing general-purpose program partitioning mechanisms
are restrictive and inflexible for different use cases (e.g., isola-
tion from spatial safety vulnerabilities). We need a technique
that enables developers to flexibly partition programs and
enforce isolation – balancing safety guarantees and performance
overhead.

In this paper, we present TYPEFLEXER, a Type-Directed
Flexible Program Partitioning system. The main design princi-
ple of this system is to separate partitioning (i.e., policy) from
enforcing the separation between partitions (i.e., mechanism).
Once a program is partitioned, users can choose enforcement
mechanisms based on the desired guarantees and tolerable
performance overhead. For instance, for the same program, the
user may use complete SFI for desktop systems v/s isolation
against only spatial safety issues on embedded systems.

We propose a type directed partitioning through untrusted
types. Specifically, we introduce tainted qualifiers that can
be used to annotate pointer types (_TPtr<T>) or functions
(_Tainted) . The tainted types form the untrusted partition
or u region (can only access tainted types), and the non-tainted
types will be the trusted partition or c region (has complete
access). Through static type checking, our type system ensures
that tainted pointers cannot directly affect untainted pointers.
After successful type checking, TYPEFLEXER creates two sets
of source files: u region and c region, containing tainted and
untainted functions, respectively.

To assist developers, we present TYPEMATIC, an automated
tool that propagates tainted annotations from a minimal set
of developer-annotated pointers (seeds), thereby preventing
taint explosion due to over-annotation. We formally prove
a clean separation theorem, ensuring that in a well-typed
system, tainted types remain strictly isolated from the rest of
the program. This guarantee prevents tainted pointers from
undermining the program’s integrity or causing issues within
the c region.

After partitioning, developers can choose any of our three
Selective Software Fault Isolation (SSeFI)-inspired mechanisms
(e.g., minimal spatial checks vs. full SFI). Each mechanism
incurs different runtime overheads while providing varying de-
grees of isolation. Our approach also integrates with alternative
backends (e.g., compiling u region with WASM [11]). We
also design several optimizations for common cases to reduce

the performance overhead of our isolation mechanisms.
In summary, the following are our contributions:

• We design a type system ensuring u cannot affect c, formally
proving a clean separation theorem.

• We build TYPEMATIC and a partitioner (CHECKMATE) to
automate annotation and emit separate source sets.

• We develop three isolation modes with different guaran-
tees/overheads.

• Our evaluation shows 0%–43.1% overhead on real bench-
marks and that TYPEFLEXER can successfully isolate 16
real-world vulnerabilities. Our partitioning mechanisms offer
the same extent of isolation compared to a closely related
work PTRSPLIT at a significantly lesser overhead.

II. BACKGROUND AND MOTIVATION

This section presents the necessary background and motiva-
tion for our work.
Memory Safety. Memory safety ensures all program memory
accesses target valid objects [12]. Violations include: Spatial
violations (e.g., out-of-bounds reads) and Temporal violations
(e.g., use-after-free).
Program Partitioning. Program partitioning [13] splits
code into isolated parts. Many solutions [5], [6], [7], [8],
[9] adopt a data-centric model [8], [9], grouping functions
accessing sensitive data into a trusted partition. Existing
techniques primarily employ program analysis and dynamic
instrumentation to enable transparent communication between
functions in trusted and untrusted partitions. Because they focus
on inter-partition interactions, these techniques are specialized
for specific isolation mechanisms. Some, such as GLAM-
DRING [8], rely on special hardware support. Other software-
based approaches also tailor their partitioning to the chosen
isolation mechanism. For example, PTRSPLIT [9] assumes
that partitions run as separate processes, exchanging data
through marshaling. Its partitioning mechanism (via Program
Dependence Graph (PDG)) is specialized for marshaling,
making it difficult to support other mechanisms like sandboxing.
DYNPTA [14] tries to reduce the overhead by using static
points-to analysis and avoiding unnecessary checks. However,
similar to PTRSPLIT, DYNPTA also combines both policy and
mechanism. HAKC [15] focuses on kernel modules, whereas
CHECKED C [16] ensures spatial safety but lacks flexible
isolation. Table I summarizes drawbacks of notable systems.
Need for Selective Fault Isolation. Existing partitioning
techniques focus on protecting sensitive data, enforcing com-
plete Software Fault Isolation (SFI) so that all executions,
data, and faults within one partition do not affect others. This
strict isolation yields high overheads (37%–163%) [8], [9], and
some mechanisms (e.g., Intel SGX) may not be available on
all systems. Such heavyweight isolation is often unnecessary
for practical security. A recent Microsoft study [2] reports that
≈ 70% of the CVEs patched over the past decade were memory-
safety bugs (both spatial and temporal). Other works [18], [19],
[20], [21] reveal that certain functions are especially prone
to specific vulnerabilities, while others cannot cause temporal
issues (such as use-after-free) if they do not invoke (e.g., directly

or transitively) any heap operations (e.g., malloc/free). Hence,
isolating such functions solely against spatial violations can
be more efficient without compromising security.

We need a program partitioning technique that flexibly
supports different isolation mechanisms for different partitions.

III. OVERVIEW

Figure 2 shows the interaction between various components
of TYPEFLEXER from a developer perspective. The developer
first annotates the source program and then specifies an isolation
mechanism. TYPEFLEXER then creates an executable such that
the trusted (c region) partition is sufficiently isolated from the
tainted (u region) partition.

We use tainted (u region) to denote untrusted code or data,
i.e., that needs to be partitioned out and should be isolated
from the rest of the program. Similarly, we use untainted (c
region) to mean trusted code or data. TYPEFLEXER’s goal is
to isolate vulnerabilities that originate in code or data explicitly
annotated as tainted (u region). The trusted partition (c region)
is assumed free of memory-safety bugs, and TYPEFLEXER
protects it from u region. An adversary can fully control inputs
to u region code and exploit arbitrary memory-safety flaws
there to corrupt other u region objects, but must not be able
to affect c region.

A. Running Example

We use the program in Figure 1 as the running example to
explain the developer workflow in using TYPEFLEXER. Figure 1
shows the C code of the redacted version of a simple network
server with server_loop as its entry point (�). The server
runs in a loop and calls handle_request, which handles a
network request. The function handle_request reads data
from the socket, and (based on the first byte), process_req1
is called to handle the request.
The Vulnerability. There are arbitrary memory write vulnera-
bilities (indicated by
s) in process_req1. This is because
the for loop only checks if cp2 has at least one more byte
(i.e., (cp2-tmp)< (CMD_S -1)). But if the character is '<',
four bytes are written, resulting in a 2-byte buffer overwrite
and an arbitrary write as the last write uses i as an index.
Goal. Given the complexity of the process_req1 function,
which also processes network data, a developer might want to
partition the function from the rest of the program.

B. Automated Partioning

First, developer annotates the function process_req1

as _Tainted indicated by 1 . Second, the code with the initial
annotation is provided to TYPEMATIC, which will propagate
the annotations to all the other interacting pointers based on
the TYPEFLEXER Type System, as indicated by 2 . Finally,
this well-typed annotated program will serve as input for our
system. Our type checker ensures that annotations follow the
typing rules, and accepts program that follow all the type rules.
Flexible Typing Rules. We allow tainted pointers (TPtr)
to appear alongside ordinary C pointers within c region
source code, significantly enhancing programmability. Since

TABLE I: Comparison of Software-Based Partitioning and Isolation Techniques.

Feature TypeFlexer
(Our Work) HAKC [15] DataShield [17] DynPTA [14] Checked-C [16] PtrSplit [9]

Type-Based Isolation ✓ ✓ × × ✓ ✓
Back-end Agnostic ✓ × × × ✓ ✓
Flexible Isolation ✓ × × × × ×
Balanced Perf & Security ✓ ✓ × ✓ ✓ ×
Minimal Annotations ✓ ✓ × × × ✓
Taint Explosion Analysis ✓ × × × × ×

� // Entry point
void server_loop(int sock_fd) {
unsigned b_z;
struct queue *p;
...
setup(crypt_key);
...
while(1) {
...
p = malloc(
sizeof(struct queue) * b_z);
...
if (handle_request(sock_fd)) {...}

}
}

int handle_request(int sock_fd) {
char buff[MAX_MSG_SIZE];
3 3g_TPtr<char> buff;

int rc = -1;
ssize_t r_len;
char filename[MAX_LEN];
r_len = read(sock_fd, buff,

MAX_MSG_SIZE);
if (r_len > 0 &&

r_len < MAX_MSG_SIZE) {
switch(buff[0]) {
case REQ1:
rc = process_req1(buff, r_len);
break;

case REQ2:
int* digit_loc;
...

}
}
return rc;

}

int process_req1 1 g_Tainted int (

char *msg 2 3_TPtr<char> msg ,
size_tm_l) {

int rc = -1, i;
if (m_l > MIN_SIZE) {
msg += sscanf(msg, "%d", &i);
if (i > 0) {

char *cp1 2 3_TPtr<char> cp1;

char *cp2 2 3_TPtr<char> cp2;

char tmp[CMD_S] 2 3_TPtr<char> tmp;

for (cp1 = msg, cp2 = tmp;
*cp1 != '\0' &&
cp2 - tmp < CMD_S - 1;
++cp1, ++cp2)

{
switch (*cp1)
{

case '<':
// We write 3 characters into
// cp2 but we only checked for 1
// charecter.
*cp2++ = '&';

 *cp2++ = 'l';

 *cp2++ = 't';
// Arbitrary write vulnerability.

 *(cp2 + i) = ';';

break;
...

} } }
}
return rc;

}

Fig. 1: C program snippet of a simple network server with an arbitrary memory write vulnerability indicated by
. The
circle markers show type annotations made by the developer (g) and automatically propagated (3) during partitioning the
function process_req1 from the rest of the code.

our threat model assumes the c region to be memory safe, it
does not attempt to protect the u region from misbehaving
c region code. However, the flow of data between tainted
and untainted pointers in c region is governed by the formal
mode-typed rules detailed in Section IV, enforced interactively
by TYPEFLEXER’s type-checker.

Moreover, arbitrary pointer casts that include common
patterns, such as void*, integer intermediates, and unions,
are fully permitted within u region code. Only casts that leak
trusted (c region) pointers into untrusted code are rejected. Even
in scenarios involving impractical pointer annotations (taint
explosion), developers always retain the flexibility to explicitly
marshal (sanitize) data from tainted (u region) to untainted
(c region) pointers, effectively breaking taint propagation
and ensuring practical applicability with moderate developer

intervention.

C. Selecting the Desired Isolation Mechanism

Instead of aiming for complete isolation, our approach
focuses on Selective Software Fault Isolation (SSeFI). Formally,
a partition is defined as ϕ-SSeFI if any violation of the property
ϕ is confined within that partition and does not impact other
partitions. For instance, achieving spatial safety-SSeFI in a
partition ensures that spatial safety violations are isolated within
that specific partition.

Developers need to choose a suitable SSeFI mechanism
(Section V) to clearly separate tainted and untainted regions.
For isolation mechanisms (ISOMEM (or Imem) and SANDMEM
(or Smem)) — The annotated code is compiled with the
TYPEFLEXER compiler to produce an executable with the
designated security feature.

Type Checker
(Sec. IV)

Source Level Program
Partitioning
(Sec. VI-C)

TypeFlexer
Compiler

(Sec. VI-A)

Sandbox
Compiler

Sandbox
Library

Program with
Type-Checker
Annotations
(Listing 1)

u-region
code

TypeMatic
(Sec. VI-D)

Annotations

Type
Errors

Isolation
Mechanism

(SSeFI)
(Sec. V)

c-region
code

Linker

Output

c-region
object file

u-region
object file

Executable
with SSeFI

Initial
Annotation

Taint explosion
analysis

Valid TypeFlexer
program

Fig. 2: Overview of interaction between various phases
of TYPEFLEXER.

In contrast, SANDBOX (or Sall) isolates both untrusted data
and code into u region. Consequently, untrusted functions must
be moved to separate u region source files, allowing compilation
with a sandbox-specific compiler for fully isolated runtime
behavior. To facilitate this process, our source-level partitioner,
CHECKMATE, divides the codebase into two categories:

• Untainted or Trusted partition (c region short for
clean/checked region), which contains source files ref-
erencing both tainted and untainted pointers, as well as
function calls to tainted functions;

• Tainted or Untrusted partition (u region short for un-
clean/unchecked region), which contains source files
defining tainted functions.

The tainted partition is compiled with our TYPEFLEXER
compiler to enforce strict isolation, while the untainted partition
can be compiled with any sandbox-specific compiler. Finally,
object files from both partitions are linked with the required
helper libraries to produce the final executable.
Summary. We define taint annotations that can be added to
any function, struct, or pointer type declaration, e.g., struct
field, struct pointer, function pointer, etc. Our type checker
statically ensures that the tainted types do not interact unsafely
with untainted types. At runtime, the tainted types are checked
to ensure that they indeed point to the tainted region. The
exact check depends on the selected isolation mechanism.
For instance, if a struct field is declared as tainted, then all
dereferences to the corresponding member (irrespective of the
object) will be considered as tainted dereferences and will
be checked. Listing 1 illustrates our static type checking and
insertion of dynamic checks.
Out-of-Scope Attacks. TYPEFLEXER does not defend against
micro-architectural and side-channel leakage (Spectre-class
transient execution, cache probing, etc.). These threats require
orthogonal defenses such as input sanitization, constant-time
coding, or hardware mitigations. Making these scoping consid-
erations explicit allows TYPEFLEXER to keep dynamic checks
lightweight while still providing strong integrity guarantees for
trusted code.

1 struct foo {
2 _TPtr<int> ptr;
3 char *ptr2;
4 };
5 struct foo *obj1;
6 int b;
7 _TPtr<int> a1;
8 int *a2;
9

10 // Here, we add a check to ensure
11 // that ptr points to a tainted memory region.
12obj1->ptr[0];......�✓
13

14 // Here, we do not add a check as
15 // the field is not tainted.
16obj1->ptr2[x];......�✓
17

18 // No check will be added in the following cases as
19 // there are no dereferneces.
20

21 // This is Okay, as propagation happens
22 // from tainted to tainted.
23 a1 = obj1->ptr + b; �
24

25 // This will be rejected (i.e., not allowed)
26 // by the type checker.
27 a2 = obj1->ptr + b; �

Listing 1: Example illustrating TYPEFLEXER’s static type
checking (OK (�)/NOTOK (�)) and dynamic checking (✓).

Variables: x Integers: n ::= Z
Mode: m ::= c | u
Type: τ ::= int | ptrm τ
Expression: e ::= n :τ | x | e + e | (τ)e

| malloc(m,ω) | free(e) |
| let x = e in e | ret(x, n :τ , e)
| ret(x, n :τ , e) | if (e) e else e
| * e | * e = e | to(m)(x){e}

Fig. 3: COREFLEXER Syntax

IV. USING TYPING TO DISTINGUISH POINTERS

The partitioning is essentially driven by our type system
that enforces the safe usage of tainted types. Our type system
enforces the policy of clear separation between tainted and
untainted types.

A. Formalism Overview

We use a simple language called COREFLEXER to explain
our typing rules. Figure 3 shows the syntax of COREFLEXER,
which is based on a subset of the Compcert formalism [22],
with some features coming from the Checked C formalism
[23]. We classify types as integers or pointers. Every pointer
type (ptrm τ) includes a mode annotation that is either tainted
(u) and non-tainted (c), and a content type (τ) denoting the
valid type it points to. u mode pointers are those living in
u region, such as all pointers in process_req1 in Figure 1,
while c pointers are the pointers that are not marked tainted

in handle_request (Ex: filename).
Disallowing Unsafe Types. The well-formedness rules of our
type system prevent unsafe types from being constructed.

Consider the type ptru (ptrc int), which describes a
tainted pointer to a c mode pointer. This is not well-formed
in COREFLEXER because it potentially exposes the c mode

pointer addresses in a u region when the tainted (u) pointer
is used. Nevertheless, we can have a c mode pointer whose
element is a tainted pointer, e.g., ptrc (ptru int) is a valid
type. This is the formalism to enforce the property that there
are no untainted pointers in u region heap in Section V-A1.
Type System. Our type system is both flow-sensitive and
gradually-typed. It introduces additional static checks during
the type-checking stage, which are then verified in the semantic
evaluation stage. The type-checker enforces constraints on the
use of u pointer types to prevent their operation within the u

regions from impacting the execution in the c regions. This
enforcement is guided by a set of well-defined typing rules.

Figure 4 shows a few of our typing rules. Each typing
rule has the form Γ ⊢m e : τ , which states that in a type
environment Γ (mapping variables to their types), expression
e will have type τ if evaluated in context mode m, indicating
that the code is in m region.

The type rule (T-DEF) ensures that pointers are used with
the right modes in the right region (m′ ≤ m). For example,
process_req1 in Figure 1, which is in u region, should
only contain u pointers. For pointer casting, rule T-CASTPTRU
permits random casting for u region, with the only requirement
that one cannot cast a u mode pointer to c mode. For c region
casting, we only permit the casting from pointers to int (T-
CASTPTRC and T-CASTINT).

Similarly, our other rules ensure that there are no unsafe
interactions between tainted (u) and non-tainted (c) pointers.
Any violations of these rules will be displayed to users. The
violations also provide information on how to fix them, enabling
users to add annotations until the type-checker accepts them
interactively.

Our typing rules statically ensure safe interaction between
c and u region pointers — providing the partitioning policy.
However, ensuring that the u region pointers do not access c

region memory (i.e., isolation mechanism) cannot be done
statically and will be performed through dynamic checks,
depending on the target isolation mechanism (Section V).

B. Meta Theories

Here, we discuss our main meta-theoretic results for CORE-
FLEXER: non-exposure, type preservation, and clean separation.
These proofs have been conducted in our Coq model.

We first show the non-exposure theorem, where code in u

region cannot access a valid c pointer address. By accessing,
we refer to the dereference, assignment, malloc, and free

operations.
Theorem 1 (Non-Exposure): For any COREFLEXER pro-

gram e, heap H , stack φ, type environment Γ, and variable
predicate set Θ that are all are well-formed and well typed
(Γ ⊢m e : τ for some τ), if there exists φ′, Θ′, H ′ and e′,
such that (φ,Θ,H , e) −→u (φ

′,Θ′,H ′, e′) and e = E[e′] and
mode(E) = u, thus, e′ does not access a c pointer.

The non-exposure theorem prevents two vulnerabilities. First,
it prevents the misuse of pointers in u region from affecting
the c region execution, such as
 in Figure 1. .

Theorem 2 (Type Preservation): For any COREFLEXER
program e, heap H , stack φ, type environment Γ being well-
formed and consistent (Γ ⊢ φ and H ⊢ φ) and well typed
(Γ ⊢c e : τ for some τ), if there exists φ′, Θ′ H ′ and e′, such
that (φ,Θ,H , e) −→m (φ′,Θ′,H ′, e′), then H ′ is consistent
with H (H ▷H ′) and there exists Γ′ and τ ′ that are well formed,
consistent (Γ′ ⊢ φ′ and H ′ ⊢ φ′) and well typed (Γ′ ⊢c e : τ).

We define a state to be stuck and critically stuck below, and
then show our main result, clean separation, which suggests
that a well-typed program can never be critically stuck in c

code regions.
Definition 1 (Critically Stuck): For a program e and

environment tuple (φ,Θ,H , e), we define it to be stuck as
that there is no transition tuple (φ′,Θ′,H ′, r), such that
(φ,Θ,H , e) −→c (φ′,Θ′,H ′, r); it is critically stuck, when
(φ,Θ,H , e) is stuck, and e is of the three situations:

• e = * n :ptru τ .
• e = * n :ptru τ =n′ :τ ′.
Theorem 3 (Clean Separation): For any COREFLEXER

program e, heap H , stack φ, type environment Γ, and set Θ
that are well-formed and consistent (Γ ⊢ φ and H ⊢ φ), if e
is type-preserved (φ ⊢c e : τ for some τ) and there exists φi,
Θi, Hi, ei, and mi for i ∈ [1, k], such that (φ,Θ,H , e) −→m1

(φ1,Θ1,H1, e1) −→m2 ... −→mk
(φk,Θk,Hk, r), then r can

never be critically stuck.
Clean separation suggests that c and u regions are completely

separated, because the tainted pointers, the only types of
pointers that communicate the c and u regions, do not cause
any problem in c regions. The
 in Figure 1 is dynamically
caught through the dynamic checks in TYPEFLEXER and it is
included in the non-exposure theorem. The additional guarantee
the clean separation provides is to ensure that even if a u mode
pointer is freed in u region, when we access it in c region, our
compiler can discover the error, explained in Section V-A as
the use-after-free dynamic check. We provide more details of
our formalism in Appendix H.

V. SELECTIVE SOFTWARE FAULT ISOLATION (SSEFI)

This section presents three distinct fault isolation mecha-
nisms, each offering varying guarantees and overhead. These
mechanisms differ in how they isolate the tainted region
(u region) from the untainted region (c region). Table II
provides a summary of each isolation mechanism, detailing
their corresponding security guarantees, pros/cons, and example
use cases, offering guidance to developers on selecting the
appropriate sandbox for their needs.

A. ISOMEM (Imem)

Imem enforces spatial and temporal SSeFI based on tainted
pointers, preventing buffer overflows or use-after-free in u from
corrupting c pointers.

For the example in Listing 2, there is an index out-of-bounds
access through buff at line 5 and use-after-free of p at line 11.
Even with these bugs, Imem protects ptr or other untainted
pointers by:

T-DEF
m′ ≤ m Γ ⊢m e : ptrm

′
τ

Γ ⊢m * e : τ

T-CASTPTRC
Γ ⊢c e : τ

Γ ⊢c (τ)e : τ

T-CASTINT
Γ ⊢c e : τ

Γ ⊢c (int)e : int

T-CASTPTRU
Γ ⊢u e : τ ′

Γ ⊢u (ptru τ)e : ptru τ

Fig. 4: Selected typing rules.

SeFI
Mechanism

u region (tainted) c region
(Code & Data)

Security
Guarantees Pros and Cons ExamplePointers Code

Imem Hoard
c region Regular C

Spatial & Temporal
Isolation (–) Complex memory tracking (interval

trees);
(–) Slow T Check;
(+) Flexible, diverse allocations;
(+) Supports custom allocators.

Pointers needing frequent resizing

Smem Sandbox
Spatial & Temporal

Isolation (+) Simple tracking (base–upper
bound);
(+) Fast T Check;
(+) Integrates with Sall ;
(–) Linear memory model.

Deterministic-time pointers or full isola-
tion needs

Sall Sandbox Complete Isolation (+) Strong isolation from non-pointer
vulns;
(–) Performance overhead.

Functions demanding maximum isolation

TABLE II: Summary of SSeFI Mechanisms.

1 char *ptr;
2 ...
3 char buff[10] __Tainted;
4 ...
5
 buff[i] = 'A'; // OOB if i>10
6 ...
7 _TPtr<int> *p = tmalloc(...);
8 ...
9 free(p);

10 ...
11
 *p = ...; // use-after-free

Listing 2: Example illustrating SSeFI Mechanisms.

• Dedicated u region Heap: All tainted buffers are allocated
separately (tainted heap) via tmalloc. The left snippet
in Figure 5 shows tainted pointer annotations; the right
shows how local tainted buffers (e.g., buff) become heap
allocations.

• Dynamic Checks (T_Check): During CodeGen, the TYPE-
FLEXER compiler wraps every operation whose evaluation
may dereference from a tainted pointer (e.g., *p, p[i], p→ f)
with an inline guard T_Check(addr,sz). TYPEFLEXER’s
type-checker (section IV) drives insertion, so untainted
accesses are never guarded. At runtime, T_Check validates
that the byte range [addr, addr+sz) lies within the active u

region heap segment(s). For Imem , we maintain a segment
tree keyed by tmalloc/tfree metadata. This metadata is
stored in the c region such that u region code cannot corrupt
this metadata through arbitrary memory access from within
the u region.
The guard does not inspect pointee contents; payload
sanitization is the responsibility of interface code (Section III).
We further reduce dynamic overhead with Loop Sanity-check
Code Motion (Section VI-B), which hoists invariant checks
out of hot loops.

u region Heap. We adapt Hoard [24] for the tainted heap,
which avoids inline metadata, thus preventing temporal viola-

*ptr

s

*c
buff[16]

obj

typedef Tstruct {
 size_t s;
 _TPtr<char> c;
} TSTR;

int *ptr;
_TPtr<STR> obj = malloc(sizeof(STR));
char buff[16] _Tainted;
buff[i] = ...

*obj

*ptr
s

*c

*buff

obj

*obj

16 bytes

c region
stack

c region
heap

c region
stack

u region
heap

int *ptr;
_TPtr<TSTR> obj = tmalloc(sizeof(STR));

_TPtr<char> buff = tmalloc(16);

T_Check(buff+i, sizeof(char));

buff[i] = ...

typedef struct {
 size_t s;

 char *c;
} STR;

typedef struct {
 size_t s;

 char *c;
} STR;

Changes made to the code
according to IsoHeap

Tainted Pointers (checked at runtime)

 Code with TypeFlexer
annotations

return
address

return
address

Runtime Checks to ensure that target
address is in u region heap (T-Check)

Fig. 5: Imem ’s Selective Fault Isolation (SeFI) mechanism.

tions (e.g., use-after-free) from exploiting heap operations [25].
Similar to any allocator, Hoard provides a level of indirection.
It uses mmap to get chunks (spanning multiple pages) from
OS and then manages these chunks for the application needs.
Subsequently, Hoard releases memory using munmap. We keep
track of valid chunks by instrumenting at mmap and munmap

call sites. We store valid intervals using a modified segment
tree [26] with a small cache for quick lookups. As shown in
Section VII, this optimization makes Imem nearly overhead-
free.

1) Security Analysis: Here we present the security analysis
and discuss how Imem prevents various attacks.
Protecting the c region stack and return addresses.. In

Imem , as illustrated in Figure 5, the runtime stack is shared
by both c and u regions. However, no tainted buffers reside
on the stack. Instead, as shown in the upper right of Figure 5,
developers convert all local buffers (e.g., buff) to tainted heap
buffers allocated via tmalloc in the u region heap. Every
access through tainted pointers (e.g., ptr, obj) is guarded by
a runtime check (T_Check) to ensure that the target address
lies in the u region heap. Consequently, although these tainted
pointer variables reside on the stack, they cannot overwrite
stack variables, including return addresses.
Protection against inter-object spatial safety violations.. As
discussed in Section V-A, T_Check only confirms whether a
pointer targets the u region heap; hence, it cannot prevent spatial
violations within u region. For instance, on the right side of
Figure 5, an out-of-bounds write through buff could overwrite
other u region objects (e.g., *c), yet it would not affect any
c region (untainted) pointers. We enforce this isolation by
ensuring that No untainted pointers in the u region heap: Per
the well-formedness rules any pointer nested within a tainted
pointer must itself be tainted.

For example, int ** cannot be expressed as _TPtr<int*>,
because the outer pointer would encapsulate an untainted
pointer.

Handling composite types: These rules also apply to com-
posite types (e.g., structs). On the left side of Figure 5,
the pointer obj, referencing STR, is tainted. On the right
side, developers redefine STR to TSTR (i.e., a Tstruct),
replacing all internal pointers (e.g., c) with tainted types. Since
TYPEFLEXER disallows _TPtr<struct str>, all declarations
referencing STR must be updated accordingly.

At compile time, Tstruct types are enforced to contain
only tainted pointers or nested Tstructs; other fields remain
unchanged. This ensures no unchecked addresses can leak
through tainted structures. Finally, the type system flags any
violation at compile time and inserts instrumentation solely for
tainted pointers.

_TPtr<TSTR> obj = ...
...
// T_Check(obj, sizeof(obj))
// T_Check(obj->c, i*sizeof(char))
...obj->c[i] =
...
STR *obj1 = ...
...
// no runtime checks as its
// an untainted field
...obj1->c[i]..

Listing 3: Example illustrating handling of composite types.

For instance, consider the example in Listing 3: Here
both obj and obj1 are pointers to types of the same size.
However, that obj is of type TSTR, which is the same as STR,
except that all pointer fields are declared tainted (right side
of Figure 5). This enables our type-checker to distinguish
between obj→ c (a tainted pointer field) and obj1→ c

(untainted pointer field) differently and add the runtime checked
(T_Check) to only tainted pointer accesses. In summary, given

that all pointers in u region heap are tainted pointers, any inter-
object (or intra-u region) overflows can only affect tainted
pointers. In addition, our T_Check ensures that all accesses
through tainted pointers are to u region heap. This shows
that inter-object overflows in u region cannot affect untainted
pointers.

2) Overhead Aspects T (Imem): Imem overhead comprises:
(i) extra heap allocations T (Ω), (ii) pointer checks T (Θ).
Hence:

T (Imem) = T (Ω) + T (Θ). (1)

B. SANDMEM (Smem)

This mechanism closely resembles ISOMEM’s approach
except for the u region heap and the corresponding T_Check

implementation.
In Smem , a sandbox (e.g., WASM) manages the u region

heap. Therefore, tmalloc (and consequently, tfree) call
sandbox-specific routines. Unlike Imem , which stores the u

region heap in the same address space, Smem places it in a
separate address space.

A key benefit of sandboxing is a simpler T_Check:
sandboxes typically define static lower and upper bounds,
so T_Check merely confirms that a pointer falls within this
range. In contrast, Imem may require a tree traversal for each
tainted memory access (see Section VII), which can be more
costly in certain cases.

Sandboxes also employ opaque identifiers to represent
pointers, which necessitates pointer swizzling, i.e., translating
opaque identifiers into usable addresses. This adds complexity
and overhead, as additional instrumentation is needed to convert
the opaque values before passing them to library calls.

However, using opaque identifiers also hinders attacks that
rely on inter-object spatial violations. To overwrite a u region
pointer with a desired address, an attacker now needs the
sandbox-specific opaque value of that address—a requirement
that imposes additional barriers compared to Imem , where
attackers can directly use raw address values.

1) Overhead Aspects T (Smem): The overhead of Smem

is similar to that of Imem (see Eq. 1), except that sandbox
allocations replace the in-process heap allocations, and pointer
swizzling adds an extra overhead component. Formally:

T (Smem) = T (σ) + T (Θ) + T (β) (2)

SandMem keeps both c region and u region within a single
process, consequently calls between c region and u region
functions are ordinary in-process function jumps, incurring no
additional IPC overhead. The main additional cost component
is due to pointer-swizzling, which is captured by the T (β)
term.

C. SANDBOX or Complete SFI (Sall)

This approach implements a conventional SFI (Software
Fault Isolation) model by fully isolating tainted code and
data from their untainted counterparts. Although mechanisms
like Imem and Smem provide partial isolation, they still run
tainted and untainted functions in the same address space with

the same privileges—leaving them open to data-oriented attacks
(e.g., via inter-object buffer overflows [27]) and illicit system
calls. For security-critical contexts, a complete SFI setup is
therefore warranted.

1) Complete SFI via Sall : Sall compiles tainted functions
and data into a sandbox environment (e.g., WASM) that is
accessible only through dedicated sandbox APIs. Manually
modifying every call site in the untainted region to redirect to
sandboxed code would be cumbersome and would require
precise pointer analysis [28]. Instead, we implement an
indirection strategy, where each tainted function’s body is
replaced with a call to its sandboxed variant. For example:
_Tainted int process_req1(_TPtr<char> msg, size_t m_l) {
+ return w2c_process_req1(_SBX_(), msg, m_l);
}

All invocations of process_req1 (including indirect calls
via function pointers) are thus routed to the sandboxed function.
The original logic of process_req1 is moved into a new func-
tion, w2c_process_req1, which is compiled by a sandbox-
specific toolchain. Our source-rewriting tool (CHECKMATE)
automates these transformations for well-typed programs.

Within the u region (sandbox), explicit T_Check calls are
unnecessary because the WASM runtime already traps out-of-
bounds memory accesses. In the untainted region, however,
each tainted pointer (e.g., a buffer in handle_request)
remains guarded by T_Check, to prevent confused-deputy
attacks [29], [30].

Pointer swizzling is needed at the sandbox boundary since
WASM uses 32-bit pointers, whereas native code uses 64-bit
pointers. For instance, a structure field may occupy 4 bytes
when tainted but 8 bytes when untainted, causing misaligned
offsets in subsequent fields. The type-checker addresses this
by marking such structures as Tstruct and automatically
performing pointer swizzling when accessed.

2) Overhead Aspects T (Sall): Like Smem , Sall incurs
overhead for sandbox-based allocations and pointer swizzling,
plus an additional cost (T (ϕ)) for running code inside the
sandbox. This also includes memory allocation time (T (σ))
from Eq. 2. Since sandboxes enforce numerous runtime checks,
executing code within a sandbox is generally slower than native
execution. Formally:

T (Sall) = T (σ) + T (Θ) + T (β) + T (ϕ) (3)

3) Handling Callbacks: Tainted functions normally only
invoke other tainted functions. However, there may be cases
where a tainted function (e.g., an input-processing routine)
needs to call back into an untainted password-check function.
TYPEFLEXER supports these scenarios via function-pointer
callbacks (Section VI-C), maintaining isolation while allowing
necessary cross-boundary function calls.

VI. IMPLEMENTATION

As outlined in Section III, TYPEFLEXER comprises three pri-
mary components: (1) a compiler (type-checker), (2) a source-
level program partitioner (CHECKMATE), and (3) an automated

annotation tool (TYPEMATIC). The compiler introduces tainted
types to create a well-typed TYPEFLEXER program.

For sandbox-based SSeFI (Sall , Case 2 in Figure 2), CHECK-
MATE partitions the program into trusted (c) and tainted (u)
source files, compiling the former with the TYPEFLEXER
compiler and the latter with the sandbox compiler. The resulting
binaries link together to enforce the guarantees in Table II. For
other isolation mechanisms, such as Imem and Smem , only the
TYPEFLEXER compiler is needed.

A. Compiler and Type Checker

TYPEFLEXER is built atop CLANG, adding 9KLoC of
modifications across its parsing (Parser), semantic analysis
(Sema), and instrumentation (CodeGen). We incorporate our
type well-formedness rules (Section IV) and perform runtime
instrumentation (e.g., pointer swizzling, T_Check) for Imem ,
Smem , or Sall based on the selected isolation mechanism.

B. Loop Sanity-check Code Motion (LSCM)

Each tainted pointer de-reference includes a check (T_Check)
to ensure validity, as noted in Section V. Tightly looping
pointer accesses can incur high overhead when repeatedly
checked. To address this, we introduce Loop Sanity-check Code
Motion (LSCM), which hoists T_Check calls outside bounded-
sequential-access (BSA) loops. LSCM employs LICM [31],
Lazy Value Information (LVI), and Scalar Evolution (SCEV)
analyses to identify BSA loops and hoist all the checks
out of such loops. The Listing 4 shows an example of our
optimization.

1 void example(_TPtr<reg_t> reg) {
2 _TPtr<char> badptr = reg->badptr;
3 // after LSCM
4 T_Check(badptr, 2378 + 2*(reg->random_bound-1));
5 T_Check(badptr, 2*2378 + (reg->random_bound-1));
6 for (int i = 0; i < 2379; i++) {
7 for (int j = 0; j < reg->random_bound; j++) {
8 badptr[i + 2 * j] = badptr[2 * i * j];
9 // before LSCM

10 T_Check(badptr, i + 2*j);
11 T_Check(badptr, 2*i*j);
12 }
13 }
14 }

Listing 4: Example of LSCM hoisting T_Check from loops.

C. CHECKMATE

As mentioned in Section V-C, SANDBOX partitioning mech-
anism requires the program to be partitioned into c region and
u region source files. CHECKMATE (3K SLoC) helps with this
by partitioning the source files of a TYPEFLEXER program.

We provide developers with a set of function qualifier
annotations (_Tainted, _Callback, _Mirror, _TLIB) to
guide the partitioning process (see Appendix B).

CHECKMATE identifies all annotated functions and copies
them into a new set of source files, which constitute the u

region. It then modifies the original code (the c region) by
inserting special calls called ”sandbox stubs”. These stubs
ensure that when the c region code calls a function that now

resides in the u region, the call is correctly redirected to the u

region’s library.
However, before the u region source files can be compiled by

the sandbox-specific compiler (e.g., WASM), the TYPEFLEXER
annotations (such as _TPtr<T> and _Tainted) within these
source files must be removed. For this, an auxiliary OCaml
tool (680 SLoC), invoked as part of CHECKMATE, is used.
Once this tool is run, the generated u region code is in vanilla-
C format and can be compiled to a u region library by a
sandbox-specific compiler.

D. TYPEMATIC

TYPEMATIC automates pointer annotation by extending
3C [32] to insert tainted pointer qualifiers using flow-sensitive
constraints derived from our typing rules (Figure 4).

Beginning with developer-supplied tainted seeds, TYPE-
MATIC propagates taint to related pointers. We implemented
taint3c, a specialized version of 3C’s program analysis tech-
nique, to handle this propagation.

Each rewritable pointer instance—e.g., int** has two—is
associated with a unique qualifier variable. We traverse the AST
and add constraints according to our typing rules (Figure 4).

For instance x ⊆ y, where x and y represent qualifier
variables or constants (tainted or untainted). Constraint solving
starts by labeling all qualifier variables as untainted, then
recursively propagates tainted to those forced by the constraints.
The solution is a final mapping of qualifier variables to their
appropriate tainted or untainted state, which we use to rewrite
pointers with taint annotations.

For instance:
void func(int **y, int* z) {

_TPtr<int> x;
z = x;
*y = z;

}

XTp Z *y

Here, z and *y become tainted, while y remains untainted.
The rewritten code is:

void func(_Ptr<_TPtr<int>> y,
_TPtr<int> z) {

_TPtr<int> x;
z = x;
*y = z;

}

E. Constraint-Based Taint Explosion Analysis

1 typedef struct basic {
2 int* arg1;
3 struct basic* arg2;
4 } t_b;
5

6 int main() {
7 _TPtr<t_b> basic_t;
8 // memory allocation ...
9 int* alias1 = basic_t->arg1;

10 int* alias2 = alias1;
11 int *alias5 = alias2;
12 // additional tainted assignments
13 alias5 = some_1;
14 alias5 = some_2;
15 return 0;
16 }

Listing 5: Example illustrating taint explosion.

TYPEMATIC also identifies taint explosion, where taint
spreads excessively along data-flow paths. Consider the listing

here Listing 5. Here, each pointer is assigned an influence
score quantifying how many pointers it taints.

A base score of 1 is assigned to each leaf node (e.g., some_1
and some_2), which is then propagated upstream (e.g., alias5
will get 2, alias2 gets 3, etc). Pointers with high influence
scores (i.e., basic_t) are prime targets for developers to adjust
or refactor, thus limiting the spread of taint.

a) Constraint Graph Construction: TYPEMATIC per-
forms a whole-program analysis (taint3c) and constructs
a directed taint flow graph G = (V,E) as shown in the listing
6. Here, the nodes V represent pointers or data structures, and
the edges E denote the data-flow for taint-propagation between
them.

The edge from TPTR to _TPtr<t_b> establishes the initial
taint source, which then propagates to struct basic from
the type-rules of TYPEFLEXER. From here, taint flows into its
fields arg1_0 and arg2_1 and subsequently through all the
aliasing pointers.

b) Score Assignment Algorithm: To quantitatively assess
each pointer’s influence on taint propagation, TYPEMATIC
employs a taint scoring algorithm grounded in the constructed
graph G. The algorithm initializes leaf nodes—defined as
pointers with no outgoing edges and not representing struc-
tures—with a base score of 1. It then performs a reverse
topological sort to iteratively propagate scores upstream,
assigning each non-leaf node a score equal to the sum of its
immediate successors’ scores. For instance, alias2 aggregates
scores from alias3 and alias5, resulting in a cumulative
score of 3. Central nodes like struct basic and _TPtr<t_b>

achieve higher scores (4 each), underscoring their roles as
primary conduits for taint flow within the graph.

TPTR

TPtr<t b>
Score: 4

struct basic
Score: 4

arg1
Score: 3

arg2
Score: 1

alias2
Score: 3

alias3
Score: 1

alias5
Score: 2

someother 1
Score: 1

someother 2
Score: 1

Fig. 6: Taint Propagation Type Reference (TPTR) Graph

c) Analysis Interpretation: In the listing 6, nodes such
as struct basic, TPTR, and _TPtr<t_b> attain the highest
scores of 4, underscoring their role in orchestrating taint
explosion across the graph. By pinpointing struct basic,

and _TPtr<t_b> as high-scoring nodes, developers can strate-
gically intervene at these junctions (assignments) to disrupt
taint propagation. For example, by un-marking _TPtr<t_b>

as tainted.
In summary, the taint scoring algorithm empowers developers

with actionable insights, enabling them to focus their taint
mitigation efforts on the most influential pointers within the
codebase. This targeted strategy not only enhances the precision
of taint analysis but also optimizes resource utilization by
avoiding redundant or low-impact annotations.

VII. EVALUATION

We evaluate TYPEFLEXER along four aspects: the ef-
fectiveness of TYPEMATIC in reducing annotation effort
(Section VII-A) needed for partitioning, the runtime and
memory overhead (Section VII-B) (including improvements
from LSCM optimizations), a comparison with existing systems
(Section VII-C), and the security impact (Section VII-D) in
mitigating real-world vulnerabilities.
Dataset. We use the following three sets of programs to evaluate
TYPEFLEXER.

• SPEC2006 Benchmarks (DS 1): We choose CPU-intensive
workloads from SPEC2006 (see Table IV) to measure
performance and compare with prior work, specifically
PTRSPLIT [33], which also reports results on SPEC2006.

• Network and Checked C Programs (DS 2): We primarily se-
lect network servers to showcase the benefit of partitioning in
security-critical contexts. Additionally, we include Checked
C programs from [34] to evaluate memory-partitioning
techniques. Table III lists these five programs.

• Known Vulnerabilities (DS 3): We gather 16 previously
disclosed CVEs (see Table V), chosen based on the following
criteria: availability of proof-of-concept (PoC), simplicity of
setup, availability of a patch, and availability of benchmark-
ing test suites for validation. Vulnerabilities are labeled SB

(stack buffer overflow), HB (heap buffer overflow), or UF

(use-after-free).

Experimental Setup. Experiments were conducted on a 6-
Core Intel i7-10700H machine with 40 GB RAM, running
Ubuntu 20.04.3 LTS. We used WASM [35] as the target sandbox
with configurations matching prior work [36].

Performance was evaluated using each program’s test suite.
For programs without a test suite, their performance is marked
as “N/A.” Runtime was measured using the elapsed clock cycles
via the POSIX clock() API and Linux’s time command,
averaging ten runs per measurement. Profiling tools gprof and
perf were used for function-level analysis. Memory usage
was measured with Valgrind’s ”massif” [37], using peak heap
usage as the metric.

A. Partitioning Effort with TYPEMATIC

Partitioning in TYPEFLEXER involves identifying risky
entities—i.e., functions or pointers to be placed in the u region
—and annotating them accordingly.

Identifying Entities to Partition. We focus on functions that
handle user (tainted) data, applying rules derived from prior
work [19], [38]:

• U LIB: Unguarded library function calls with user data (e.g.,
CVE-2014-0160/Heartbleed).

• U PA: Unguarded pointer arithmetic on a user-data pointer
(e.g., CVE-2018-19872).

• U PC: Unguarded casting of a user-data pointer (e.g.,
CVE-2015-7547).

• U ULIB: Unsafe library functions operating on user-data
pointers (e.g., CVE-2017-7472).

These rules successfully identify all vulnerabilities in our
dataset (DS 3). For network programs (DS 2), they mark most
input-processing methods as tainted. In SPEC benchmarks
(DS 1), we use the same tainted pointers as PTRSPLIT.
Annotation Effort. Once developers specify an initial set of
tainted pointers, TYPEMATIC automates the propagation of
annotations throughout the code. The TYPEMATIC Annotations
column in Table III and Table IV quantify the annotations
automatically propagated by TYPEMATIC from a single func-
tion/pointer annotated according to the above rules. Without
TYPEMATIC, developers would have to annotate on an average
∼100 pointers per program. Specifically, the Manual Effort
column in Table III and IV indicates the amount of time
required to manually annotate pointers from an initial set
of developer-specified annotations. This process was guided
iteratively by TYPEFLEXER’s interactive type-checker, which
pinpointed typing violations suggesting the need for annotations.
With TYPEMATIC, these annotations would be automatically
added, and the developer just needs to add sanitizations (if
needed to avoid taint explosion). These results demonstrate the
effectiveness of TYPEMATIC in reducing the annotation effort.

B. Performance Overhead

We measure overhead for each SSeFI mechanism (see Sec-
tion V). Table III and Table IV report our results on network
programs and SPEC CPU2006 benchmarks, respectively. Mem-
ory overhead is specific to each mechanism and is negligible
in size.
Imem Overhead. Imem (column Imem in Tables III and IV)
generally adds minimal overhead, often near 0%, and some-
times even negative. This is because of the Hoard allocator
[24] (used to maintain u region), which is more efficient than
the traditional allocator (i.e., malloc) for certain use cases,
resulting in more efficient execution than the original program.
Most overhead originates from T_Check, which validates each
tainted pointer’s membership in the u region heap. Although
invoked on every tainted pointer access, its impact depends
more on access patterns and LSCM optimizations than on
pointer count (e.g., lbm with 681 pointers vs. libquantum with
182). The W/O LSCM and W LSCM columns in Tables III
and IV show the performance overhead without and with
Loop Sanity-check Code Motion (LSCM), respectively. We
can see that LSCM significantly reduces the overhead for most
benchmarks, with the majority of them to 0%. For instance,

for libquantum (in Table IV), LSCM reduced the overhead
from 217% to 35%, a 3X reduction.
Sandbox Dependent Isolation Mechanisms. The overhead of
other SSeFI mechanisms (Smem , Sall) mainly depend on the
target sandboxing mechanism. As mentioned before, we used
WASM, which, as shown by the recent work [39], can introduce
up to 200% overhead. We also performed micro benchmarking
and validated this. More details in (Appendix C).
Smem Overhead. The Smem column of Tables III and IV, show
the overhead of Smem mechanism. The glaring observation
in Table III (e.g libPNG) sustains a negative overhead. This
is because the memory allocated by these custom allocators
(Smem and Imem) yields a faster overall access speed. As
expected, for most of the cases, the overhead is slightly greater
than Imem because, as explained in Section V-B: (i) Tainted
allocations must switch to the sandbox and (ii) Tainted pointers
require swizzling. However, in a few cases (e.g., libquantum
in Table IV and Parsons in Table III), the overhead is lower
than Imem . This is because, unlike in Imem , where T_Check

check involves checking tainted memory ranges, T_Check in
Smem is just a single range (i.e., sandbox memory range)
check. Consequently, for applications with more T_Check calls,
the additional cost in Imem surpasses the overhead related to
sandbox switching, resulting in high overhead. We provide a
more detailed comparison in (Appendix C1).
Sall Overhead. Sall (Section V-C) isolates both code and
data of the u region within the WASM sandbox. Consequently,
Table IV and Table III show it incurs higher overhead than
Imem or Smem . Programs like lbm, which spend most of
their runtime in the sandbox, incur the largest overhead.
As mentioned before, the overhead stems primarily from
WASM sandbox execution rather than additional checks in
TYPEFLEXER.
Taint Explosion Analysis. We manually analyzed the
results of our taint explosion analysis (Section VI-E)
and found that all the identified explosion points are
correct. For instance, in SPEC CPU2006, taint explo-
sion occurs mainly in lbm and libquantum. TYPE-
MATIC correctly identified srcGrid/dstGrid (lbm) and
quantum_reg/quantum_reg_node (libquantum) as core
tainted objects. The CDFs (Cumulative Distribution Function)
generated by TYPEMATIC on SPEC2006 benchmarks reveal
critical insights into TYPEMATIC’s dynamics. Figure 7, shows
the CDFs of tainted pointers for libquantum and sphinx3.

libquantum exhibits a steep increase in the CDF, which
indicates taint explosion. This is due to the pervasive influence
of the Tstruct quantum_reg, which makes all member
pointers and external pointers to this structure tainted.

In contrast, sphinx3 follows a linear trend. This linearity
signifies that the initial taint annotations have a direct and
contained influence. This linearity reflects an absence of
secondary taint propagation, highlighting that taint effects are
confined to their immediate data interactions.

The graph clearly demonstrates the impact of initial annota-
tions on taint propagation. Specifically, annotations targeting
pointers to complex structures or entire structures significantly

amplify taint spread, highlighting their profound influence on
overall taint propagation.

0 20 40 60 80 100
0

20

40

60

80

100

Percentage of Tainted Pointers
Pe

rc
en

ta
ge

of
C

um
ul

at
iv

e
Sc

or
es

CDF of Tainted Pointers for libquantum and sphinx3

libquantum sphinx3

Fig. 7: Combined CDF of Tainted Pointers for libquantum and
sphinx3 with distinct line styles

C. Comparison with Related Work

We selected PTRSPLIT [33] for our comparison as it supports
general pointers and doesn’t require special hardware features,
such as SGX (for GLAMDRING [8]). As mentioned before, the
source code of PTRSPLIT is unavailable, and only performance
numbers with SPEC2006 were available.

The last column of Table IV shows the runtime overhead
of PTRSPLIT on various programs of SPEC2006. Except for
lbm, the overhead of all our SSeFI isolation mechanisms is
lower than that of PTRSPLIT. This is even true for the case
of Sall , which provides the same guarantees of PTRSPLIT.

For lbm, the high overhead of 844.1% arises because a
significant portion of the program is marked as tainted and
thus fully executes within the WASM sandbox, which intro-
duces a runtime overhead of 1434% (our micro-benchmarks
(Appendix C)).

Using perf, we observed that approximately 95% of the
execution time occurs within the WebAssembly sandbox,
making it the primary contributor to the overall overhead. We
emphasize that these performance limitations are attributable to
the sandbox itself, not to TYPEFLEXER. Therefore, selecting
more efficient sandboxes can enhance performance.

D. Security Impact

Previously Known Vulnerabilities (DS3). We first applied
the guidelines from Section VII-A to mark initial tainted
functions, then used TYPEMATIC to propagate taint annotations.

TABLE III: Results of TYPEFLEXER on Network-program dataset (DS2)

Program Description Size
(SLoc)

Manual
Effort
(hrs)

TYPEMATIC
Annotations SeFI Runtime Overhead

CVEs
Isolated

u region Imem Smem Sall
Num

pointers LOC
W/O

LSCM
W

LSCM
W/O

LSCM
W

LSCM
W/O

LSCM
W

LSCM

ProFTPD High-performance
FTP server 556K 1 6 0 0.31% 0.29% 0.41% 0.38% N/A N/A CVE-2010-4221 (�)

MicroHTTPD Simple
HTTP server 122K 3 139 450 0.4% 0% 0% 0% 0% 0% N/A

UFTPD UDP-based
FTP server 3K 3 146 90 0% 0% 0% 0% 2.3% 2.3% CVE-2020-14149 (○)

CVE-2020-5204 (○)
LibPNG png2pnm & pnm2png 76K 8 248 0 -3.2% -3.8% -7.65% -8.33% N/A N/A CVE-2018-144550 (�)

Parsons JSON-parsing
library 3.1K 5 364 800 13.48% 12.3% -3.98% -9.2% 262% 262% N/A

Geometric Mean/Median 34.36K/76K 3.24/3 102/146 318/90 2.19%/0.31% 1.76%/0% -2.2%/0% -3.43%/0% 88.1%/2.3% 88.1%/2.3%

TABLE IV: Results of TYPEFLEXER on SPEC2006 Benchmarks (DS1). W/O LSCM and LSCM indicate performance
without and with LSCM optimization, respectively.

Program Size
(SLoc)

Sensitive
Pointers

(Initial Annotations)

Manual
Effort
(hrs)

TYPEFLEXER PTRSPLIT
TYPEMATIC
Annotations SeFI Runtime Overhead

Num
pointers
(Total)

Num of
functions

(Total)
Imem Smem Sall

W/O
LSCM

W
LSCM

W/O
LSCM

W
LSCM

W
LSCM

lbm 1.1 K LBM GridPtr
LBM Grid 6 681 (695) 5 (19) 13.7% 0% 8.4% 0% 844.1% 24.3%

libquantum 4.3 K
All quantum reg*

All quantum reg node*
hash

6 182 (1,690) 6 (115) 217.5% 35.4% 35% 0% 39.2% 179.2%

h264ref 51.5 K FirstMBInSlice 1 10 (32,212) 5 (590) 0.38% 0% 1.18% 0% 2.36% 15.5%

bzip2 8.3 K progName 0.3 8 (4,356) 6 (100) 3.7% 0% 4% 0% N/A 5.3%

sjeng 13.5 K realholdings 1 2 (3,415) 5 (144) 1% 0% 1% 0% N/A 10.2%

milc 13.5 K path coeff
act path coeff 0.3 7 (5,001) 2 (235) 5.8% 0% 6.9% 0% N/A 2.2%

sphinx3 25K liveargs 0.2 9 (949) 3 (369) 1.1% 0% 0.8% 0% N/A 7.1%

Geometric mean 0.94 (899)48,318 (32)1,572 4.28% 0% 3.58% 0% 43.1% 12.8%

Abbreviations: “Num of functions”: number of functions whose program dependence graph contains the sensitive pointer. “LSCM”: Loop Sanity-check Code Motion.

All vulnerable functions were ultimately classified as tainted.
We chose Imem and Smem as isolation mechanisms for each
partitioned program. Next, we confirmed each vulnerability
and its affected pointers resided in the tainted region, and
compiled the partitioned programs under Imem or Smem . We
then tested them using publicly available exploits and bug-
triggering inputs. As summarized in Table V (column ○), all
exploits failed to compromise the host c region, demonstrating
effective isolation.

Network and Checked C Programs (DS2). We also rein-
troduced older vulnerabilities in three network-related or
Checked C-based programs. Again, we confirmed the exploit
code could not escape isolation, as indicated by ○ in Table III.
These findings confirm that TYPEFLEXER’s SSeFI mechanisms
effectively mitigate real-world vulnerabilities. We discuss CVE-
2017-9204 as a case study (Appendix D).

When taint explosion became an issue, we used marshalling
to isolate vulnerable pointers, avoiding widespread pointer
annotations.

VIII. RELATED WORK

Program Partitioning Mechanisms. Several works partition
applications into trusted and untrusted components [5], [6], [7],
[8], [9], [13], often following a data-centric paradigm [8],
[9]. These methods usually involve marshaling (serializa-
tion/deserialization) and incur 37%–163% overhead [8], [9].
Many solutions remain bound to a single isolation mechanism,
limiting deployment flexibility. RLBox [36] also employs
tainted types but focuses on C++ templates and library-level
isolation, complicating its application to arbitrary C code.
RLBox lacks automated type annotation or formal isolation
guarantees and only supports complete library partitioning.
Retrofitting New Type Systems. Existing safe-C dialects [23],
[40], [41], [42], [43], [44] enhance spatial or temporal safety,
often through “fat” pointers or shadow metadata [40], [41],
thereby adding runtime overhead. Cyclone [42] and Deputy [44]
similarly refine memory safety but do not provide sandbox-
based isolation. In contrast, TYPEFLEXER’s SSeFI mechanisms
use taint-based partitioning without “fat” pointers, letting
developers choose among multiple sandbox backends based
on desired overhead and isolation. This decoupled architecture
allows flexible trade-offs, ensuring comprehensive type-driven

TABLE V: Results of TYPEFLEXER on Vulnerability dataset (DS3). We use SB (Stack buffer overflow), HB (Heap buffer
overflow), and UF (Use after free) to indicate corresponding vulnerability types.

CVE-ID
(Type) Program Size

(SLoc)

Functions
(Pointers) Imem Smem

CVE-2016-10094 (SB) LibTIFF-v4.0.7 185 K 1 (6) ○ ○
CVE-2017-9204 (SB) imageworsener-1.3.1 70 K 1 (8) ○ ○
CVE-2017-9205 (SB) imageworsener-1.3.1 70 K 1 (8) ○ ○
CVE-2015-8668 (SB) tiff-4.0.1 1,845 K 1 (3) ○ ○
CVE-2004-1257 (SB) abc2mtex1.6.1 5K 1 (1) ○ ○
CVE-2010-2891 (HB) LibSMI 187 K 5 (19) ○ ○
CVE-2012-4409 (HB) mcrypt-2.5.8 40 K 1 (4) ○ ○
CVE-2004-1120 (HB) prozilla 24 K 1 (2) ○ ○
CVE-2004-1292 (HB) ringtonetools 7 K 1 (2) ○ ○
CVE-2004-2093 (HB) rsync 34 K 1 (4) ○ ○

EDB-14904 (HB) fcrackzip 12 K 1 (4) ○ ○
CVE-2006-0539 (HB) fcron 33 K 1 (2) ○ ○
CVE-2010-2089 (UF) Python-2.6 917 K 1 (2) ○ ○
CVE-2014-4616 (UF) Python-2.7.1 1,014 K 2 (5) ○ ○

CVE-2015-7805 (UF /HB) libsndfile-1.0.25 112 K 1 (2) ○ ○
CVE-2010-1634 (UF) Python-2.7 1013 K 1 (2) ○ ○

partitioning while remaining agnostic to the specific sandbox
technology.

IX. LIMITATIONS AND FUTURE WORK

We acknowledge the following limitations and plan to tackle
them as part of future work.

• Sandbox Dependency: TYPEFLEXER assumes the avail-
ability of a sandbox and consequently inherits all the
limitations of the corresponding sandbox. e.g., Programs
should be compilable with the sandbox compiler. Also, as
shown in Section VII-B, the performance of the partitioned
applications mainly depends on the sandbox. However, our
implementation is not dependent on one specific sandbox
and can be easily extended to other sandboxes. As future
work, we will extend our implementation to other sandboxes.

• Taint Explosion: Although, TYPEMATIC helps in identifying
taint explosion points, it does not provide ways to handle
it. Developers need to figure out appropriate sanitization
routines and place them at these explosion points, which
might be inconvenient. We plan to explore automated
sanitization routines insertion techniques as part of our future
work.

• Intra-u region Corruption: TYPEFLEXER guarantees that
tainted pointers cannot corrupt the c region without detection,
but offers no protection against attacks that stay entirely
within the u region.

• Initial Annotations: Security of a program using TYPE-
FLEXER hinges on complete and accurate taint seeds
provided by the developer. Omitted seeds (e.g., developer
oversight) may leave vulnerable/risky pointers unchecked,
resulting in undertainting.

• CLANG and 3C Limitations: Our implementations of
type checker and TYPEMATIC are based on CLANG’s type
checker and 3C, respectively. Consequently, we inherit the
corresponding frameworks’ and tools’ limitations. Although
we have extensive tests (300), we cannot guarantee bug-free

implementation because of the fundamental limitation of
testing.

• Benchmark Representativeness: Our evaluation focuses on
user-space programs. As part of our future work, we plan
to extend our system to other domains, such as Embedded
firmware, kernel modules, and hand-tuned code with custom
allocators.

X. CONCLUSION

We present TYPEFLEXER, a flexible type-directed pro-
gram partitioning system that effectively separates policy and
mechanism by introducing a type-system that enables fine-
grained program partitioning. We formalize the type-system
and semantics and prove various safety properties ensuring
spatial memory safety through isolation, Its implementation
enables developers to partition applications interactively and
effectively. Our evaluation over multiple datasets shows that
TYPEFLEXER provides an effective and efficient technique
for program partitioning with almost no overhead for most
isolation mechanisms compared to 12.8% by the related work
[33]. We also show TYPEFLEXER is successful in isolating
several security vulnerabilities.

ACKNOWLEDGMENTS

We want to thank our shepherd and anonymous reviewers
for their valuable comments and inputs to improve our paper.
This research was supported in part by the National Science
Foundation (NSF) under Grants CNS-2340548, CPS-2333487,
and CCF-2422127. Any findings are those of the authors and
do not necessarily reflect the views of our sponsors.

REFERENCES

[1] C. Trends, “Cve trends,” https://www.cvedetails.com/
vulnerabilities-by-types.php, 2021, accessed: 2020-10-11.

[2] BlueHat, “Memory corruption is still the most prevalent security
vulnerability,” https://www.zdnet.com/article/microsoft-70-percent-of-all-
security-bugs-are-memory-safety-issues/, 2019, accessed: 2020-02-11.

[3] B. Zeng, G. Tan, and U. Erlingsson, “Strato: A Retargetable Framework
for Low-level Inlined-reference Monitors,” in Proceedings of the 22Nd
USENIX Conference on Security, 2013.

https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php

[4] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz, “SoK: Sanitizing for security,” in Proceedings of the 2019
IEEE Symposium on Security and Privacy (S&P), 2019.

[5] G. Tan et al., “Principles and implementation techniques of software-
based fault isolation,” Foundations and Trends® in Privacy and Security,
vol. 1, no. 3, pp. 137–198, 2017.

[6] D. Brumley and D. Song, “Privtrans: Automatically partitioning programs
for privilege separation,” in USENIX Security Symposium, vol. 57, no. 72,
2004.

[7] A. Bittau, P. Marchenko, M. Handley, and B. Karp, “Wedge: Splitting
applications into reduced-privilege compartments.” USENIX Association,
2008.

[8] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P.-L. Aublin,
F. Kelbert, T. Reiher, D. Goltzsche, D. Eyers, R. Kapitza et al.,
“Glamdring: Automatic application partitioning for intel sgx,” in 2017
USENIX Annual Technical Conference (USENIX ATC 17), 2017, pp.
285–298.

[9] S. Liu, G. Tan, and T. Jaeger, “Ptrsplit: Supporting general pointers
in automatic program partitioning,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, 2017,
pp. 2359–2371.

[10] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in Proceedings of the fourteenth ACM
symposium on Operating systems principles, 1993, pp. 203–216.

[11] S. Narayan, T. Garfinkel, S. Lerner, H. Shacham, and D. Stefan, “Gobi:
Webassembly as a practical path to library sandboxing,” arXiv preprint
arXiv:1912.02285, 2019.

[12] M. Payer, “Software security: Principles, policies, and protection,” 2019.
[13] S. Rul, H. Vandierendonck, and K. De Bosschere, “Towards automatic

program partitioning,” in Proceedings of the 6th ACM conference on
Computing frontiers, 2009, pp. 89–98.

[14] T. Palit, J. F. Moon, F. Monrose, and M. Polychronakis, “Dynpta:
Combining static and dynamic analysis for practical selective data
protection,” in 2021 IEEE Symposium on Security and Privacy (SP).
IEEE, 2021, pp. 1919–1937.

[15] D. P. McKee, Y. Giannaris, C. Ortega, H. E. Shrobe, M. Payer, H. Okhravi,
and N. Burow, “Preventing kernel hacks with hakcs.” in NDSS, 2022,
pp. 1–17.

[16] C. C. Spec, “The Checked C,” https://github.com/microsoft/checkedc,
2016, accessed: 2020-10-10.

[17] S. A. Carr and M. Payer, “Datashield: Configurable data confidentiality
and integrity,” in Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, 2017, pp. 193–204.

[18] D. Meng, M. Guerriero, A. Machiry, H. Aghakhani, P. Bose, A. Continella,
C. Kruegel, and G. Vigna, “Bran: Reduce vulnerability search space in
large open source repositories by learning bug symptoms,” in Proceedings
of the 2021 ACM Asia Conference on Computer and Communications
Security, 2021, pp. 731–743.

[19] X. Du, B. Chen, Y. Li, J. Guo, Y. Zhou, Y. Liu, and Y. Jiang, “Leopard:
Identifying vulnerable code for vulnerability assessment through program
metrics,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 60–71.

[20] Y. Ding, S. Suneja, Y. Zheng, J. Laredo, A. Morari, G. Kaiser, and
B. Ray, “Velvet: a novel ensemble learning approach to automatically
locate vulnerable statements,” in 2022 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2022, pp. 959–970.

[21] L.-Y. Situ, Z.-Q. Zuo, L. Guan, L.-Z. Wang, X.-D. Li, J. Shi, and P. Liu,
“Vulnerable region-aware greybox fuzzing,” Journal of Computer Science
and Technology, vol. 36, pp. 1212–1228, 2021.

[22] S. Blazy and X. Leroy, “Mechanized Semantics for the Clight
Subset of the C Language,” Journal of Automated Reasoning,
vol. 43, no. 3, pp. 263–288, 2009. [Online]. Available: http:
//dx.doi.org/10.1007/s10817-009-9148-3

[23] L. Li, Y. Liu, D. L. Postol, L. Lampropoulos, D. V. Horn, and M. Hicks,
“A formal model of Checked C,” in Proceedings of the Computer Security
Foundations Symposium (CSF), Aug. 2022.

[24] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson, “Hoard: A
scalable memory allocator for multithreaded applications,” ACM Sigplan
Notices, vol. 35, no. 11, pp. 117–128, 2000.

[25] M. Eckert, A. Bianchi, R. Wang, Y. Shoshitaishvili, C. Kruegel,
and G. Vigna, “Heaphopper: Bringing bounded model checking to
heap implementation security,” in 27th {USENIX} Security Symposium
({USENIX} Security 18), 2018, pp. 99–116.

[26] G. Blankenagel and R. H. Güting, “External segment trees,” Algorithmica,
vol. 12, no. 6, pp. 498–532, 1994.

[27] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control data
attacks,” in 2016 IEEE Symposium on Security and Privacy (SP). IEEE,
2016, pp. 969–986.

[28] A. Milanova, A. Rountev, and B. G. Ryder, “Precise call graph
construction in the presence of function pointers,” in Proceedings. Second
IEEE International Workshop on Source Code Analysis and Manipulation.
IEEE, 2002, pp. 155–162.

[29] D. Ahmad and I. Arce, “The confused deputy and the domain hijacker,”
IEEE Security & Privacy, vol. 6, no. 1, pp. 74–77, 2008.

[30] A. Machiry, E. Gustafson, C. Spensky, C. Salls, N. Stephens, R. Wang,
A. Bianchi, Y. R. Choe, C. Kruegel, and G. Vigna, “Boomerang:
Exploiting the semantic gap in trusted execution environments.” in NDSS,
2017.

[31] A. V. Aho, R. Sethi, and J. D. Ullman, “Compilers principles, techniques,
and tools addison-wesley, 1986,” QA76, vol. 76, no. C65A37, p. 1985,
1985.

[32] A. Machiry, J. Kastner, M. McCutchen, A. Eline, K. Headley, and
M. Hicks, “C to checked c by 3c,” Proceedings of the ACM on
Programming Languages, vol. 6, no. OOPSLA1, pp. 1–29, 2022.

[33] S. Liu, G. Tan, and T. Jaeger, “PtrSplit: Supporting general pointers in
automatic program partitioning,” in CCS. ACM, 2017.

[34] Microsoft, “Benchmarks for evaluating Checked C,” https://github.com/
microsoft/checkedc/wiki/Benchmarks-for-evaluating-Checked-C, 2019,
accessed: 2020-10-27.

[35] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman,
L. Wagner, A. Zakai, and J. Bastien, “Bringing the web up to speed with
webassembly,” in PLDI. ACM, 2017.

[36] S. Narayan, C. Disselkoen, T. Garfinkel, N. Froyd, E. Rahm, S. Lerner,
H. Shacham, and D. Stefan, “Retrofitting fine grain isolation in the firefox
renderer,” in 29th USENIX Security Symposium (USENIX Security 20).
USENIX Association, Aug. 2020, pp. 699–716. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity20/presentation/narayan

[37] J. Seward, N. Nethercote, and J. Weidendorfer, Valgrind 3.3-advanced
debugging and profiling for gnu/linux applications. Network Theory
Ltd., 2008.

[38] D. Mu, A. Cuevas, L. Yang, H. Hu, X. Xing, B. Mao, and G. Wang,
“Understanding the reproducibility of crowd-reported security vulnerabil-
ities,” in 27th {USENIX} security symposium ({USENIX} security 18),
2018, pp. 919–936.

[39] A. Jangda, B. Powers, E. D. Berger, and A. Guha, “Not so fast: Analyzing
the performance of {WebAssembly} vs. native code,” in 2019 USENIX
Annual Technical Conference (USENIX ATC 19), 2019, pp. 107–120.

[40] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer,
“CCured: Type-Safe Retrofitting of Legacy Software,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 27, no. 3, 2005.

[41] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “SoftBound:
Highly Compatible and Complete Spatial Memory Safety for C,” in
Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2009.

[42] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, , and Y. Wang,
“Cyclone: A Safe Dialect of C,” in USENIX Annual Technical Conference.
Monterey, CA: USENIX, 2002, pp. 275–288.

[43] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney,
“Region-based Memory Management in Cyclone,” in PLDI, 2002.

[44] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals, M. Harren,
G. Necula, and E. Brewer, “SafeDrive: Safe and recoverable extensions
using language-based techniques,” in 7th Symposium on Operating System
Design and Implementation (OSDI’06). Seattle, Washington: USENIX
Association, 2006.

[45] B. J. Nelson, Remote procedure call. Carnegie Mellon University, 1981.
[46] V. Costan and S. Devadas, “Intel sgx explained,” Cryptology ePrint

Archive, 2016.
[47] A. S. Elliott, A. Ruef, M. Hicks, and D. Tarditi, “Checked C: Making C

Safe by Extension,” in 2018 IEEE Cybersecurity Development (SecDev),
2018, pp. 53–60.

[48] G. J. Duck and R. H. Yap, “Heap bounds protection with low fat
pointers,” in Proceedings of the 25th International Conference on
Compiler Construction. ACM, 2016, pp. 132–142.

[49] J. Duan, Y. Yang, J. Zhou, and J. Criswell, “Refactoring the FreeBSD
kernel with Checked C,” in Proceedings of the 2020 IEEE Cybersecurity
Development Conference (SecDev), 2020.

https://github.com/microsoft/checkedc
http://dx.doi.org/10.1007/s10817-009-9148-3
http://dx.doi.org/10.1007/s10817-009-9148-3
https://github.com/microsoft/checkedc/wiki/Benchmarks-for-evaluating-Checked-C
https://github.com/microsoft/checkedc/wiki/Benchmarks-for-evaluating-Checked-C
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan

[50] S. Mergendahl, N. Burow, and H. Okhravi, “Cross-language attacks,”
2022.

APPENDIX

A. Program Partitioning Background

For instance, in the following code key is marked as sensitive
and functions that access it, i.e., initkey and encrypt

are considered to be part of trusted partition and the other
function, i.e., main will be in the untrusted partition.

1 char __attribute__((annotate("sensitive"))) *key;
2

3 void initkey(int sz) {
4 ...
5 for (i=0; i<sz; i++) key[i]= ...;
6 }
7

8 void encrypt(char *ptxt, int sz) {
9 ..

10 for (i=0; i<sz; i++)
11 ctxt[i]=ptxt[i] ^ key[i];
12 ..
13 }
14

15 int main() {
16 ..
17 initkey(strlen(txt));
18 encrypt(txt, strlen(txt));
19 ...
20 }

As we can see, partitioning is achieved easily in the existing
techniques by identifying which functions access sensitive data.
These partitions can be separated in various ways, e.g., as
different processes communicating through RPC [45], parent
and child processes communicating through shared memory,
etc.

The main novelty of existing techniques is using various
program analysis and dynamic instrumentation methods to
facilitate transparent communication between functions in
trusted and untrusted partitions. Because of their focus on inter-
partition interactions, the existing techniques are specialized
for the target isolation mechanism. For instance, PTRSPLIT [9]
technique assumes that partitions are hosted as separate
processes and data is exchanged through marshaling, e.g.,
sending data pointed by ptxt and sz during calls to encrypt

(i.e., line 18 in the above example) and synchronizing the data
back to ctxt on return. Any other isolation mechanism or data
exchange (e.g., shared memory) cannot be supported as the par-
titioning technique is specialized for marshaling by using PDG
and tracking bounds information. Similarly, GLAMDRING [8]
is specialized for partitioning using SGX-enclaves [46].

B. Additional Function Qualifiers

In addition to the _Tainted qualifier that marks functions
to be in u region, we provide a few other qualifiers that enable
developers to provide additional information and ease the
partitioning process. Specifically, we provide three additional
qualifiers: _Callback, _Mirror, and _TLIB.

Callback: Developers should use this qualifier to mark callback
functions, i.e., functions in c region, that can be called from the
tainted region. This is also used to enforce CFI as explained
in Section V-A1. For Sall and Cbox mechanisms, the CHECK-
MATE inserts appropriate sandbox dependent mechanisms to
enable this.

Mirror: This qualifier permits copying the corresponding
function into both c region and u region, which permits the
handling of certain simple utility functions that are called
from both regions. An example of such usage is shown
in Appendix E.
TLIB: This qualifier relaxes type-checking rules on library

functions, allowing developers to use the functions freely with
tainted types. Specifically, the annotated library functions can
be called with tainted types. We assume that developers would
add checks to ensure that calling the annotated library functions
is fine. We provide an example of the usage

C. WASM Micro-Benchmarking

Figure 8 shows our micro-benchmarking result. We measure
the following operations as part of this:
Memory access in WASM Sandbox (SBXm): All memory
accesses in a sandbox need additional verification by the
sandbox runtime, which results in runtime overhead. We
perform 100K memory accesses (read and write) in a loop,
measure the time inside the sandbox, and compare it with the
time executed as a regular program. The results (Figure 8)
show that we incur 1434% overhead for memory accesses
in the WASM sandbox compared to that of native C code.
Although recent works [39] suggest a lower runtime overhead
we follow a different approach by first compiling our tainted
source code to a wasm binary. We then use wasm2c to generate
WebAssembly C code which we later compile alongside wasm-
runtime to form our final tainted library. This approach grants
us ease in interoperability with C programs as the tainted
functions can now be treated as statically linked functions.
However, it’s important to note that TYPEFLEXER does not
restrict users from using wasm-runtime linking.
Sandbox Roundtrip (SBXRT): We measure the time to make a
round trip between c region and sandbox (u region) compared
to a regular function call and return. We create a no-op function
below:
void noop() { return; }

We place this noop function in the sandbox and measure the
time to call and return from it:
s = clock(); sandbox_noop(); e = clock();

We compare the time with a regular call when noop is in c

region.
As shown in Figure 8, we incur an overhead of ∼ 53%. This

is much smaller than the overhead reported by prior works [39],
[36] as we use binaryen’s wasm optimizer to optimize the
compiled wasm binary. The reported overhead is because of
transitions to/from sandbox require context switches which are
more expensive than regular function calls (i.e., call and ret

instructions).
Tainted Pointer Access in c region (TPc): As explained
in Section V-B, we need to perform pointer swizzling to
convert the sandbox-specific representation of tainted pointers
to raw addresses. In addition, our instrumentation also checks at
runtime that all tainted pointers are within the sandbox address
range before accessing them. We measure this additional

Memory Access in SBX

SBX Roundtrip

Tainted-ptr Access

0

500

1,000

1,434

53 2834.16

R
un

tim
e

O
ve

rh
ea

d
(%

)

Hoard
WASM SBX

Fig. 8: WASM Micro-Benchmarks.

overhead by comparing tainted pointer accesses with regular
pointer accesses.

1) Imem v/s Smem tainted pointer access: As shown
in Figure 8, incurred overhead in accessing tainted pointers
in c region is lower for Imem (28%) as compared to 34% for
Smem due to the additional opaque pointer translation cost (eq:
2).
Overhead comparison amongst different partitioning mecha-
nisms: We first create a perform_loop:
void perform_loop(_TPtr<int> integer_array, int sz) {

int interval = sz / 10;
for (int i = 0; i < 10000; i++) {

for (int j = 0; j < 10; j++) {
int index = j * interval;
integer_array[index] += (j % 2 == 0) ? 1 : -1;

}
}

}

We then call perform_loop in a loop of increasing memory
allocation sizes and record time as follows:

for (int size = start_size;
size <= end_size; size += step_size) {

s = clock();
_TPtr<int> array = __malloc__(size * sizeof(int));
perform_loop(array, size);
__free__(array);
e = clock();

}

Although Imem ’s per pointer transaction cost is lesser than
Smem (fig fig. 8), Imem has higher overall overhead as shown
in Figure fig. 9. This is because, Imem ’s suffers from frequent
cache-miss costs when dereferencing pointers with bad spatial
locality. Consequently, programs that have large u-region with
non-linear tainted pointer accesses benefit more by using Smem

instead of Imem .

D. CVE Examples

Listing 1: CVE-2014-0160 (Heartbleed)

1 typedef struct {
2 uint16_t type;
3 uint16_t payload;
4 uint8_t *data;
5 } tls1_heartbeat;
6

0 0.2 0.4 0.6 0.8 1

·107

100

101

Memory allocated (in 4-Bytes)

L
og

ar
ith

m
ic

Ti
m

e
(s

)

Imem

Smem

Sall

Fig. 9: Partitioning mechanisms and their overhead

7 int tls1_process_heartbeat(SSL3_RECORD *r) {
8 unsigned char *p = &r→ data[0], *end =

&r→ data[r→ length];
9 uint16_t hbtype, payload;

10 tls1_heartbeat hb;
11

12 hbtype = (p[0] << 8) | p[1];
13 payload = (p[2] << 8) | p[3];
14 hb.type = hbtype;
15 hb.payload = payload;
16 p += 4;
17

18 if (hb.type == 1) {
19 if (p + hb.payload + 2 > end) {
20 return -1;
21 }
22

23 hb.data = malloc(hb.payload + 3);
24 memcpy(hb.data, p, hb.payload);

25 }
26 ...
27 }

Listing 2: CVE-2018-19872 (libGD)

1 typedef struct {
2 int width, height;
3 unsigned char *pixels;
4 } gdImage;
5

6 int gdImageCreateFromGifCtx(gdImage *image, FILE
*infile) {

7 unsigned char buf[16];
8 unsigned char color_table[256 * 3];
9 int color_table_size;

10

11 // ... Reading the GIF header ...
12

13 // Reading the color table size from the header
14 fread(buf, 1, 3, infile);
15 color_table_size = 2 << (buf[2] & 0x07);
16

17 // Reading the color table
18 fread(color_table, 1, color_table_size * 3, infile);

19

20 // ... Processing the GIF image ...

21 }

Listing 3: CVE-2017-7472 (Mercurial)

1 #define MAX_CONFIG_LEN 1024
2

3 void hg_extension(const char *config) {
4 char buf[MAX_CONFIG_LEN + 1];
5

6 // ... Processing other command-line options ...
7

8 // Copying the configuration string to the buffer
9 strcpy(buf, config);

10

11 // ... Processing the configuration ...
12 }

Listing 4: CVE-2015-7547(glibc)

1

2 void process_answer(unsigned char *answer, int
answer_length) {

3 int offset = 0;
4 while (offset < answer_length) {
5
6

7 rdlength = ntohs(rdlength);
8 offset += 10;
9

10 if (rrtype == ns_t_a || rrtype == ns_t_aaaa) {
11 struct sockaddr_storage addr;
12 if (rrtype == ns_t_a) {
13 struct sockaddr_in *addr4 = (struct

sockaddr_in *)&addr;
14 memcpy(&addr4→ sin_addr, answer + offset,

sizeof(addr4→ sin_addr));

15 } else {
16 struct sockaddr_in6 *addr6 = (struct

sockaddr_in6 *)&addr;
17 memcpy(&addr6→ sin6_addr, answer +

offset, sizeof(addr6→ sin6_addr));

18 }
19 }
20 offset += rdlength;
21 }
22 }

E. Additional Qualifiers Examples

Mirror: This qualifier permits copying the corresponding
function into both c region and u region, which permits the
handling of certain simple utility functions that are called from
both regions. For example, append_string in our evaluation of
parsons wasm has callers from both the regions.
_Mirror int append_string(_TPtr<char> buf,
const char* appendStr : itype(_Nt_array_ptr<const char>),
_TPtr<char> buf_start, size_t buf_len) {
/* Qualifier Rules:
1.) No access to global data NOT marked "const"
2.) Callees must be _Tainted or _Mirror
*/
...
}

Qualifying append_string with _Mirror duplicates the function
in both regions, allowing calls to append_string with parameter
to appendStr as an unchecked or checked pointer within u and

c regions, respectively. Consequently complexity from over-
tainting is avoided as appendStr need not be tainted in c region
and neither are callbacks required to access append_string

from u region. ” Mirror” enforces control-flow and data-flow
compile-time semantic rules to ensure all variable and function
call dependencies of mirrored functions required for u region’s
compilation are resolved.
TLIB: This qualifier relaxes type-checking rules on library

functions, allowing developers to use the function freely in c

region.
// First, manually check the memory is in tainted region.
// if yes, then call strncpy.
if (!is_mem_in_range(t_str, t_str + n, SBX_LOW(), SBX_HIGH()))

handle_violation();
// our type checker ignores this because
// the _TLIB annotation below.
strncat(dst, t_str, n);

- extern char *strncat (char *__restrict __dest,
+ _TLIB extern char *strncat (char *__restrict __dest,
const char *__restrict __src, size_t __n); // In the header file
}

Passing tainted pointer t_str to unqualified strncat above is
disallowed without having additional u region implementation
for strncat. If a user ascertains that t_str has the right buffer
size for strncat, she might label strncat with _TLIB, so that
t_str can be treated as an checked pointer parameter; such
annotation relaxes type-checking for all the arguments to its
calls. It is worth noting that TYPEFLEXER does not enforce any
semantics to ensure _TLIB functions implemented in c region
are non memory-modifying; therefore, using _TLIB requires
users’ awareness of memory address leaks.

F. Generating c region Source Partition

Handling Calls to Tainted Functions: In c region, we also need
to modify calls to tainted functions as they execute inside the
sandbox (separate address space) and thus cannot be invoked
as regular functions. However, modifying every call site of
tainted functions is tedious and also requires precise pointer
analysis [28] to handle indirect calls through function pointers.

We handle this by indirection: Instead of modifying the call
sites, we modify the body of tainted functions to invoke the
corresponding function in the sandbox. For instance, we modify
the body of tainted function process_req1(from Figure 1) in c

region as below:
_Tainted int process_req1(_TPtr<char> msg, size_t m_l){
- int rc = -1, i;
- if (m_l > MIN_SIZE) {
- ...
+ return w2c_process_req1(msg, m_l);
}

This ensures that all calls (even through function pointers) to
the tainted function process_req1 are redirected to the sandbox.
Handling _Callback Qualifiers: Consider the follow-
ing StringAuth function that checks whether the provided user
input usertoken is authenticated by accessing checked data.
Since this needs to be invoked from u region it is annotated
as a _Callback.
_Callback _TPtr<char> StringAuth(

_T_Array_Ptr<const char> usertoken : count(len),
size_t len) {

...
// Checks whether usertoken is authenticated
/*
These functions will be restricted to only accept
tainted parameters.

*/
...
}

These callback functions are only allowed to use tainted
parameters as they will be called from a tainted region.

For each such function, we create a corresponding trampoline
function that serves as the entry point for the callback function,
as shown below:
+ unsigned int _T_StringAuth(void* sandbox,
+ unsigned int arg_1,
+ unsigned long int arg_2) {
+ // Perform necessary Type-conversion of arguments.
+ // uname <- conver arg_1
+ // len <- arg_2
+ ret = StringAuth(uname, len);
+ // ret_val <- ret
+ return ret_val;
+ }

The trampoline function handles the invocations from
sandbox (and hence the extra parameter sandbox), performs
necessary pointer argument conversion, and eventually invokes
the callback.

We also add the code to register this trampoline function
with the sandbox. The registration function for WASM sandbox
is as shown below:
+ void registerCallback_StringAuth(void){

+ //callback function signature {ret <- int, arg_1 <- int, arg_2 <- long}

+ int ret_param_types[] = {0, 0, 1};

+ // 2 <- arg count, 1 <- ret count

+ __StringAuth__C_ = _SBXREG_((void*)_T_StringAuth,2,1, ret_param_types);

+ }

This registration function creates an opaque handle for the
trampoline function and enables u region to call the trampoline
using the corresponding handle.

Lastly, we change the tainted function’s body to include an
indirect call to the sandbox’s implementation of the tainted
function. However, instead of passing the callback function
pointer directly from the argument list, we pass the generated
trampoline handle __StringAuth__C_ as shown below:
_Tainted _TPtr<char> StringProc(_TPtr<_TPtr<const char>> user_input,

_TPtr<_TPtr<char>(_TPtr<const char> input, size_t len)>StringAuth) {

- ...

- //complex Function Body

- return StringAuth(one_past_start, string_len);

+ return w2c_StringProc(_SBX_(), (unsigned int)string, __StringAuth__C_);

}

G. Checked C

Recently, Elliott et al. [47] and Li et al. [23] introduced
and formalized Checked C, an open-source extension to C, to
ensure a program’s spatial safety by introducing new pointer
types, i.e., checked pointer types. Which are represented as
system-level memory words without “fattening” metadata [48],
and ensuring backward compatibility, i.e., developers can use
checked and regular (unchecked or wild) pointers within the
same program.
Checked Pointer Types. Checked C introduces three varieties
of checked pointer:

• _Ptr<T > (ptr) types a pointer that is either null or points
to a single object of type T .

• _Array_ptr<T > (arr) types a pointer that is either null or
points to an array of T objects. The array width is defined
by a bounds expression, discussed below.

• _NT_Array_ptr<T > (ntarr) is like _Array_ptr<T > except
that the bounds expression defines the minimum array
width—additional objects may be available past the upper
bound, up to a null terminator.

Both arr and ntarr pointers have an associated
bounds which defines the range of memory referenced
by the pointer. The three different ways to declare
bounds and the corresponding memory range is:
_Array_ptr<|T|> p: count(n—)— [p, p+ sizeof(T)× n)
_Array_ptr<|T|> p: byte_count(b—)— [p, p+ b)
_Array_ptr<|T|> p: bounds(x, y—)— [x, y)

The bounds can be declared for ntarr as well, but the memory
range can extend further to the right, until a NULL terminator is
reached (i.e., NULL is not within the bounds).
Ensuring Spatial Memory Safety. The Checked C compiler
instruments loads and stores of checked pointers to confirm
the pointer is non-null, and additionally the access to arr and
ntarr pointers is within their specified bounds. For example,
in the code if (n>0)a[n-1] = ... the write is via address α =
a + sizeof(int)×(n-1). If the bounds of a are count(u), the
inserted check confirms a ≤ α < a + sizeof(int)×u prior
to dereference. Failed checks throw an exception. Oftentimes,
inserted checks can be optimized away by LLVM resulting in
almost no runtime overhead [49].
Backward Compatibility. Checked C is backward compatible
with legacy C as all legacy code will type-check and compile.
However, the compiler adds the aforementioned spatial safety
checks to only checked pointers. The spatial safety guarantee
is partial when the code is not fully ported.
No Safety Against Unchecked Pointers. A partially annotated
program can still enjoy spatial safety only if checked pointers
do not communicate with any unchecked ones. For instance,
in the example below, there are no spatial safety violations in
the function func as it uses only checked pointers. However,
the other unconverted code regions (or unsafe regions) can
affect pointers in safe regions and violate certain assumptions
leading to vulnerabilities, as demonstrated by cross-language
attacks [50].

1) Converting C to Checked C: The safety guarantees of
Checked C come with certain restrictions. For instance, as
shown below, Checked C programs cannot use address-taken
variables in a bounds expression as the bounds relations may
not hold because of possible modifications through pointers.

...
_Array_ptr<int> p : count (n) = NULL;
é..,&n,.

Consequently, converting existing C programs to Checked C
might require refactoring, e.g., eliminate &n from the program
above without changing its functionality. This might require
considerable effort [49] depending on the program’s complexity.
Recently, Machiry et al., developed 3C [32] that tries to
automatically convert a program to Checked C by adding
appropriate pointer annotations. However, as described in 3C,

completely automated conversion is infeasible, and it requires
the developer to convert some code regions manually.

2) CHECKCFLEX (Cbox): This is not a separate isolation
mechanism but rather a technique to guarantee additional safety
to Checked C. Here, we use CHECKCFLEX, our integration
of TYPEFLEXER with Checked C types. Specifically, in a
partially converted code, we consider all Checked C code and
pointers as c region and unchecked code and pointers as u

region. The u region can be isolated by any of the above
isolation mechanisms.
Security Guarantees The use of Checked C types in c region
guarantees that there will be no spatial safety violation in it.
The use of isolation ensures that unchecked pointers (now u

region pointers) will not affect Checked C pointers (i.e., c
region pointers), preventing cross-language attacks as explained
in Section G.
Overhead Aspects Since Cbox uses Checked-C (T(Checked C))
in conjunction with either Imem , Sall , or Sall isolation
mechanisms (T(Iso)), Overhead of Cbox can be represented
as:

T (Cbox) = T (Checked C) + T (Iso) (4)

3) Cbox Overhead: As explained in Section V-C, Cbox is
same as Sall , but the c region code will have Checked C anno-
tations. We have tested this on only one program i.e., Parsons,
because of the manual effort [32] in adding Checked C
annotations.

We observed that the overhead of Cbox is the same as that
of Sall , indicating that Checked C annotations in c region do
not have any performance overhead. This is in line with the
observations made by previous work [49], which demonstrate
that Checked C does not have any performance overhead.

H. Well-formedness and Metatheories

m ⊢ int
ξ ∧m ⊢ τ ξ ≤ m

m ⊢ ptr
ξ [β τ]κ

m ∧ u = u c ∧m = m m1 ∧m2 = m2 ∧m1

Fig. 10: Well-formedness for Nested Pointers

In our formalism, every c mode constant pointer requires a
validity check to make sure that heap is consistant. Here, we
require a static verification procedure for validating a literal
pointer, which is similar to the dynamic verification process
in Section IV.

The verification process H ⊢ n : τ checks (Figure 11)
validates the literal n :τ , where H is the initial heap that the
literal resides. For a c mode pointer, we verify that its pointer
address is well-defined in H , as well as its element value is
recursively well-defined. In addition, we do not verify any u

pointer, but make sure that c pointers are well-defined.
Now, we show some Well-formedness and consistency

definitions that are required in showing meta-theories. The
type preservation theorem relies on several well-formedness:

H ⊢ n : int H ⊢ 0 : ptrm
′
τ H ⊢ n : ptru τ

H ⊢ H (n) : τ

H ⊢ n : ptrc τ

Fig. 11: Verification/Type Rules for Constants

Definition 2 (Type Environment Well-formedness): A type
environment Γ is well-formed if every variable mentioned as
type bounds in Γ are bounded by int typed variables in Γ.

Definition 3 (Heap Well-formedness): A heap H is well-
formed if (i) H (0) is undefined, and (ii) for all n : τ in the
range of H , type τ contains no free variables.

Definition 4 (Stack Well-formedness): A stack snapshot φ is
well-formed if for all n :τ in the range of φ, type τ contains
no free variables.
We also need to introduce a notion of consistency, relating
heap environments before and after a reduction step, and type
environments, predicate sets, and stack snapshots together.

Definition 5 (Stack Consistency): A type environment Γ and
stack snapshot φ are consistent—written Γ ⊢ φ—if for every
variable x, Γ(x) = τ implies that φ(x) = n :τ .

Definition 6 (Stack-Heap Consistency): A stack snapshot
φ is consistent with heap H —written H ⊢ φ—if for every
variable x, φ(x) = n :τ implies H ⊢ n : τ .

Definition 7 (Checked Heap-Heap Consistency): A heap H ′

is consistent with H —written H ▷ H ′—if for every constant
n, H ⊢ n : τ implies H ′ ⊢ n : τ .

Here, we discuss our main meta-theoretic results for CORE-
FLEXER: non-exposure, type preservation, and clean separation.
These proofs have been conducted in our Coq model.

We first show the non-exposure theorem, where code in u

region cannot access a valid c pointer address. By accessing,
we refer to the dereference, assignment, malloc, and free

operations.
Theorem 4 (Non-Exposure): For any COREFLEXER pro-

gram e, heap H , stack φ, type environment Γ, and variable
predicate set Θ that are all are well-formed and well typed
(Γ ⊢m e : τ for some τ), if there exists φ′, Θ′, H ′ and e′,
such that (φ,Θ,H , e) −→u (φ

′,Θ′,H ′, e′) and e = E[e′] and
mode(E) = u, thus, e′ does not access a c pointer.

The non-exposure theorem prevents two vulnerabilities. First,
it prevents that the misuse of pointers in u region do not affect
the c region execution, such as
 in Figure 1. Second, it
represents how trampoline functions are organized to support
the callback mechanism in TYPEFLEXER.

The COREFLEXER does not have type progress, referring to
that a well-typed C program might not make a move. However,
COREFLEXER has type preservation in c code region, which
relies on several consistency definitions given in Appendix H.

Theorem 5 (Type Preservation): For any COREFLEXER
program e, heap H , stack φ, type environment Γ being well-
formed and consistent (Γ ⊢ φ and H ⊢ φ) and well typed
(Γ ⊢c e : τ for some τ), if there exists φ′, Θ′ H ′ and e′, such
that (φ,Θ,H , e) −→m (φ′,Θ′,H ′, e′), then H ′ is consistent

with H (H ▷H ′) and there exists Γ′ and τ ′ that are well formed,
consistent (Γ′ ⊢ φ′ and H ′ ⊢ φ′) and well typed (Γ′ ⊢c e : τ).

We define a state to be stuck and critically stuck below, and
then show our main result, clean separation, which suggests
that a well-typed program can never be critically stuck in c

code regions.
Definition 8 (Critically Stuck): For a program e and

environment tuple (φ,Θ,H , e), we define it to be stuck as
that there is no transition tuple (φ′,Θ′,H ′, r), such that
(φ,Θ,H , e) −→c (φ′,Θ′,H ′, r); it is critically stuck, when
(φ,Θ,H , e) is stuck, and e is of the three situations:

• e = * n :ptru τ .
• e = * n :ptru τ =n′ :τ ′.
Theorem 6 (Clean Separation): For any COREFLEXER

program e, heap H , stack φ, type environment Γ, and set Θ
that are well-formed and consistent (Γ ⊢ φ and H ⊢ φ), if e
is type-preserved (φ ⊢c e : τ for some τ) and there exists φi,
Θi, Hi, ei, and mi for i ∈ [1, k], such that (φ,Θ,H , e) −→m1

(φ1,Θ1,H1, e1) −→m2
... −→mk

(φk,Θk,Hk, r), then r can
never be critically stuck.

Clean separation suggests that c and u regions are completely
separated, because the tainted pointers, the only types of
pointers that communicate the c and u regions, do not cause
any problem in c regions. The
 in Figure 1 is dynamically
caught through the dynamic checks in TYPEFLEXER and it is
included in the non-exposure theorem. The additional guarantee
the clean separation provides is to ensure that even if a u mode
pointer is freed in u region, when we access it in c region, our
compiler can discover the error, explained in Section V-A as
the use-after-free dynamic check.

I. Additional Program evaluations

Here, we provide the description of additional program
evaluations.
parsons. Parsons is annotated by considering the JSON data as
tainted. Consequently, we mark all the data structures that store
the JSON data as tainted. Consequently, we modify all the
functions that process these data structures to operate on tainted
values. We made annotations on parsons to support Imem ,
Smem , Sall , and Cbox partitioning mechanisms. Benchmarks
for both of these forks are recorded using the mean difference
between the TYPEFLEXER and each of these variants when
executing 10 consecutive iterations of the test suite. Since
Imem internally uses hoard allocators, our benchmarking for
this is made in comparison to a slightly modified version of
parsons that internally use hoard allocators. This is done to
nullify any unfair advantage offered by hoard allocators.
LibPNG. TYPEFLEXER changes for libPNG is narrow in scope
and begin with the encapsulation CVE-2018-144550 and a
buffer overflow in compare read(). However, we also annotate
sections of Lib-png that involve reading, writing, and image
processing (interlace, intrapixel, etc) on user-input image data
as tainted. That is, rows of image bytes are read into tainted
pointers and the taintedness for the row bytes is propagated
throughout the program. All our changes extend to the png2pnm
and pnm2png executables. For evaluation, we run png2pnm on

a 35MB large image of size 5184x3456 to convert it to a pnm
file. Similarly, we run pnm2png to convert the output from
above (52MB) to png. We validate our results by ensuring a
successful loop alongside all tests from libpng’s pre-defined
test suite. We repeat this experiment over 10 iterations and
take the mean value as the record result.
MicroHTTPD. MicroHTTPD demonstrates the practical dif-
ficulties in converting a program to TYPEFLEXER. Our
conversion for this program was aimed at sandboxing memory
vulnerabilities CVE-2021-3466 and CVE-2013-7039. CVE-
2021-3466 is described as a vulnerability from a buffer overflow
that occurs in an unguarded ”memcpy” which copies data into
a structure pointer (struct MHD PostProcessor pp) which is
type-casted to a char buffer (char *kbuf = (char *) &pp[1]).
Our changes would require making the ”memcpy” safe by
marking this pointer as tainted. However, this would either
require marshaling the data pointed by this structure (and
its sub-structure pointer members) pointer or would require
marking every reference to this structure pointer as tainted,
which in turn requires every pointer member of this structure
to be tainted. Marshaling data between structure pointers is
not easy and demands substantial marshaling code due to the
spatial non-contiguity of its pointer members unlike a char*.
This did not align with our conversion goals which were aimed
at making minimal changes. Consequently, the above CVE
stands un-handled by TYPEFLEXER. Our changes for CVE-
2013-7039 involve marking the user input data arguments of
this function as tainted pointers and in the interests of seeking
minimal conversion changes, we do not propagate the tainted-
ness on these functions. Following up on the chronological
impossibility of sandboxing bugs before they are discovered
and the general programmer intuition, we moved several core
internal functions (like MHD str pct decode strict () and
MHD http unescape()) to execute within the sandbox.
ProFTPD:. TYPEFLEXER changes for ProFTPD were limited
and made to exactly encapsulate CVE-2010-4221 by marking
the user input to the unsafe function ”pr netio telnet gets()”
as tainted. Although we propagate the taintedness of the above
function’s argument, run-time overhead measured by following
the methodology in VII was minimal as the data-flow graph
for the tainted pointer was small and thereby, required fewer
pointers to be annotated.
UFTPD. TYPEFLEXER changes for UFTPD were aimed at
sandboxing CVE-2020-14149 and CVE-2020-5204. CVE-2020-
14149 was recorded as a NULL pointer dereference in the
handle CWD() which could have led to a DoS in versions
before 2.12, thereby, requiring us to sandbox this function. CVE-
2020-5204 was recorded as a buffer overflow vulnerability in
the handle PORT() due to sprintf() which also required us to
sandbox this function.

	Introduction
	Background and Motivation
	Overview
	Running Example
	Automated Partioning
	Selecting the Desired Isolation Mechanism

	Using Typing to Distinguish Pointers
	Formalism Overview
	Meta Theories

	Selective Software Fault Isolation (SSeFI)
	IsoMem (Imem)
	Security Analysis
	Overhead Aspects T(ISO-Heap)

	SandMem (Smem)
	Overhead Aspects T(Smem)

	Sandbox or Complete SFI (Sall)
	Complete SFI via Sall
	Overhead Aspects T(Sall)
	Handling Callbacks

	Implementation
	Compiler and Type Checker
	Loop Sanity-check Code Motion (LSCM)
	CheckMate
	TypeMatic
	Constraint-Based Taint Explosion Analysis

	Evaluation
	Partitioning Effort with TypeMatic
	Performance Overhead
	Comparison with Related Work
	Security Impact

	Related Work
	Limitations and Future Work
	Conclusion
	References
	Appendix
	Program Partitioning Background
	Additional Function Qualifiers
	wasm Micro-Benchmarking
	Imem v/s Smem tainted pointer access

	CVE Examples
	Additional Qualifiers Examples
	Generating c region Source Partition
	Checked C
	Converting C to Checked C
	CheckCFlex (Cbox)
	Cbox Overhead

	Well-formedness and Metatheories
	Additional Program evaluations

